The Synthesis of Potential Anticancer Agents. XXXVI. N-Nitrosoureas. ${ }^{1}$ II. Haloalkyl Derivatives

liceaved l/ay 12, 1:/6*

Abstract

 ($B C N C^{-}$), an experimentally important anticancer agent, have been investigated, and stmotnre-activity relation--hips have been established with respect to intraperitoneally and intracerebrally inoculated Li210 monse lenkenia. Structural modifications inchode variation of halogen, alkyl branching, and introdnction of varionsly -nbstituted cecosliphatic, aromatic, and heterocyelic gromps. Decomposition with amines as a method of determining the position of nitrosation in nitroso derivatives of unsymmetrical 1,3 -disubstituted nreas has been momplemented principally by pmr spectroscops. The effect of steric lactors and aquenns dilution of the nitrosating medium (formic arid) on isomer fatios in the nitrosation of 2 -(haloethyl)meav having certain cyclic sub)tituents has been demonstrated, as well as relative lability of certam nitrosonreas in undilnted formic acid. Screening data indicate that the nost active nitrosoureas so far evalnated against both the intraperitoneal anm intracerebral disease are 1-[2-(ehloro or fluoro)ethyl]-1-nitrowneas snhstitnted in the 3 position by a 2 - (chlorn or flumo ethy or cycloaliphatic gronp. A few exceptions to this generalization were noted.

In previous reports, " the somewhat randon invest $i-$ Lation of congeners of 1-methyl-1-mitrosourea that led to the experimentally and perhaps clinically useful antilcukemic: agent, 1,3-bis(2-chloroethyl)-1-nitrosourca (1, BCNU), ${ }^{3}$ was described. The efferency and

$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{NCONHCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ $\underset{\sim}{1}$
 1

reproducibility of the activity shown by BCNU against both intraperitoneally and intracerebrally inplanted LI210 leukemia in mice have made investigation of the kinctics of leukemic-cell kill possible and have led to a restatenent of the criteria associated with curability of experinental leukemia, ${ }^{4}$ which is now being extrapolated to the therapy of human neoplasms. These findings and concepts have accelerated interest in structural modifications of BCNE^{-}and related N nitrosonrens that might meliorate the insidious effects of delayed toxicity, ${ }^{3 d, 5}$ but retain intracerebasl activity. ${ }^{.2 l}, 6$ This eontimuing search has led to the synthesis of a number of new haloalkylureas (Table I), many ot which have been converted to the corresponding nitroso derivatives (Table II); analogs of these conpounds having substituents other than halogen will be reported separately. The methods of synthesis are in gemeral based on those previously employed.

[^0]Chemical Properties and Structure.--.'the preponderance of unsynmetrical 1,3 -disubstituted ureas annong the ureas synthesized necersitater antiouassigmment of structure to the corresponding nitrowo derivatives. Rationalization bascd on relative mudeophilicity of the urea nitrogen atoms can lead to cremeous structural assignments as in the case of the previously reported ethyl $\overline{5}$-(2-chloroethyl)-5̄-nitrosohydantonte ${ }^{\text {za }}(\mathbf{2 a})$, whoze structure became suspect because of a low degree of L1210 aetivity. Reaction of the nitrosohydantoate with cyclohexylannine in water resulted in the isolation of a 30% yield of 1 -(2-chloro-ethyl)-3-cyclohexylurea (3a), which could have formed only from ethyl $\overline{3}$-(2-chloroethyl)-3-nitrosohydantoatc $(\mathbf{2 b})$; further confirmation of structure $\mathbf{2 b}$ was later obtained by phar spectroscopy.

Isolation and identilication of ureas as deconnposition products of nitrosoureas constitute proof of homogencity only if a single product is isolated in hearly theoretical yield; detection of two products indicates an isomeric mixture of nitrosouretis, but the isolation of a single product corresponding to one isoner in lew than theoretical yield does not eliminate the presencer of the other ixonner. For example, the deromposition of a mixture of 1 -(2-chloroethyl)-3-cyclopentyl- N uitrosoness with anmonimm hydroxide resulter it the isolation of cyelopentylurea in 73% yield, which iudicated that at least 73% of the mixture was 1 -(2-chloro-ethyl)-3-(yclopentyl-1-nitrosourea (4a). A subsequent

4a, $Y=-\mathrm{NO}_{i} \ell=\mathrm{H}$
b, $\mathrm{Y}^{\prime}=\mathrm{H}, \mathrm{Z}-\mathrm{NO}$

Figure 1.--Infrared (in KBr disk) and pmr [in $\mathbf{1 0 \%}$ (w/v) (hhloroform- d solution at $60 \mathrm{Me} / \mathrm{sec}$) spectra of the product from nitrosation of 1 -(2-chloroethyl)-3-phenylurea in aqueous formic acid.
examination of the pmr spectruni revealed that the ratio of $\mathbf{4 a}$ to the isomer $\mathbf{4 b}$ was roughly $3: 1$.

Clear-cut separation of isomeric pairs of nitrosoureas by thin layer chromatography has been observed only in the case of the 1-(2-bromoethyl)-N-nitroso-3phenylureas $\mathbf{5 a}$ and $\mathbf{5 b}$, but several mixtures of a nitrosourea and the corresponding unnitrosated urea, as well as mixtures of products of decomposition of nitrosoureas with amines, have been so separated and identified. Thus, thin layer chromatography showed the isolated product of the reaction of 1-(2-bromoethyl)-3-(2-chloroethyl)-N-nitrosourea with cyclohexylamine in water to be a mixture of 1-(2-bromoethyl)-3-cyclohexylurea (3b) and 3a as would be expected from the isomeric pair $6 \mathbf{a}$ and $\mathbf{6 b}$; pnır data indicated a conıposition of approximately equal parts of $\mathbf{6 a}$ and $\mathbf{6 b}$.

5a, $Y=N O ; Z=H$
b, $\mathrm{Y}=\mathrm{H} ; \mathrm{Z}=\mathrm{NO}$

6a, $Y=N O ; Z=H$
b, $Y=H ; Z=N O$

Since nitrosation of a ureido function causes a shift of carbonyl absorption in the infrared to a higher wavenumber, ${ }^{22}$ the completeness of nitrosation can often be established by infrared spectroscopy, and in some instances doublet absorptions (both $\mathrm{C}=\mathrm{O}$ and NH) are definitely indicative of an isomeric mixture (cf. Figures 1 and 2). The most generally useful means of establishing the isomeric purity of a nitrosourea, however, has been pnir spectroscopy. Distinction between RNH and RN(NO) groups was first made in the spectrun of BCNU, the asymmetry of the central portion

Figure 2.-Tnfrared (in KBr disk) and pmr [in 10% (w / v) chloroform- d solution at $60 \mathrm{Mc} / \mathrm{sec}]$ spectra of the product from nitrosation of 1-(2-chloroethyl)-3-phenylurea in undiluted formic acid.
of which is attributed to NH coupling of the adjacent methylene group since $A_{2} B_{2}$ symmetry is effected (graphic resolution) by deuterium oxide in dimethyl sulfoxide d_{6}. Complete deuterium exchange of the NH protons of 1,3-bis(2-chloroethyl)urea, which required a period of about 26 hr , resulted in an $\mathrm{A}_{2} \mathrm{~B}_{2}$ symmetry that could be observed without graphic resolution. This type of coupling has previously been noted in the spectra of certain carboxanides. ${ }^{7}$ Spectral asymmetry of the $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$ group ($\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{X}$ system) and sylumetry of the $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{~N}^{-}(\mathrm{NO})$ group $\left(\mathrm{A}_{2} \mathrm{~B}_{2}\right.$ system) are clearly seen in Figures 1 and 2. The contposition of the mixture (Figure 1), which was previously reported as pure $\mathbf{7 a}{ }^{2 a}$ is estimated by integral ratios to be 60% 1-(2-chloroethyl)-1-nitroso-3-phenylurea (7a) and 40%-(2-chloroethyl)-1-nitroso-1-phenylurea (7b).

The unique F^{19} splitting pattern as seen in the spectra of 2 -fluoroethylamines ${ }^{8}$ conıplicates the spectra of 2 fluoroethylnitrosoureas, but the principle of analysis is the same as with sinıpler spectra. Singlet absorption of the $\mathrm{CH}_{3} \mathrm{~N}(\mathrm{NO})$ group characterizes all the methylnitrosoureas studied and hence confirns certain tenuous assignments previously based on low yields

[^1]| R | | Rerrysto solvent | $\begin{gathered} \text { Yieb, } \\ \% \\ \% \end{gathered}$ | $\mathrm{Mns}^{\prime \prime}{ }^{\circ} \mathrm{C}$ | | | Formulo | －Cambor，
 Caled Fomol | | －Hyspmen．${ }^{\text {－}}$－ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | Colen | | | lamal | Colwl | lown |
| | | | | | | | | | | | | | |
| H | A | Acetonitrile－ether | is 85 | 83－86 | 1660 | 15.50 | | $\mathrm{C}_{4} \mathrm{I} \mathrm{I}_{7} \mathrm{FN} \mathrm{N}_{2} \mathrm{O}$ | 33.95 | 39.88 | 6.65 | 6.46 | 26.40 | 26．3： |
| Mctliyl | B：a | Chloroform－petr ether | 81 | 78－80 | 16.30 | 1600 | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~F}^{\mathrm{N}} \mathrm{O}_{2} \mathrm{O}$ | 39.99 | 39.77 | 7.55 | 7． 44 | 23．32 | $\underline{23.11}$ |
| 2－Fluoroethyl | Ca | Luthanol－petr ether | 53－87 | 139－141 | 1630 | 1500 | $\mathrm{C}_{5} \mathrm{IH}_{40} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}$ | 39.47 | 39.74 | （6．6：） | 6． 86 | 18.42 | 18．4：3 |
| 2－Chioroethyl | Bat | Chloroform－petr ether | 30－30 | $95-96$ | 1695 | 1590 | $\mathrm{C}_{5} \mathrm{IH}_{10} \mathrm{ClFN}_{2} \mathrm{O}$ | 35．62 | 35.31 | 5.98 | 5.76 | 16.63 | 16．60） |
| Cychohexy | B, H | Chloroform petr ether | 68 | 123－125 | 1630 | 1590 | $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}$ | 57.42 | 57． 50 | 9.11 | 9）${ }^{1}$ | 14.88 | 14.76 |
| trans－4－t－Butylcyclohexyl | Ca | Acetonitrile water | $3:-40$ | 144 | $16: 30$ | 1510 | $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}$ | 6：3．90 | （i3．92 | 10．83 | 10.41 | 11.46 | 11.70 |
| 2－Nombonyl | Ca | Acetonitrile－water | 41. | 120－122 | 16：－ | $1 \overline{56}$ | $\mathrm{C}_{10} \mathrm{H}_{77} \mathrm{~F}_{2} \mathrm{C}$ | 59.97 | 60.15 | 8.65 | S． S^{2} | 13.99 | 14.01 |
| 1－Adamanty | （ ${ }^{\text {a }}$ | Acetonitrile | 68－79 | 212 | 1620 | 159\％ | $\mathrm{C}_{3}\left(\mathrm{I}_{2}, \mathrm{~F}^{\prime} \mathrm{N}_{3}(1)\right.$ | 64.93 | $6 \overline{5} .06$ | 8．81 | SE， | 11.65 | 11.70 |
| ma－Cholestam－3 $\alpha-y^{-1}$ | Ca | Acetonitrile－ctianol | －3：－90 | 242－244 | 16：30 | 15̄万 | $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{FN}_{2} \mathrm{O}$ | 75.58 | 75.61 | 11.21 | 11.08 | 5.88 | $\overline{5.91}$ |
| Phnis | Bio＇ | bither－petr ether | 50 | 144－145 | 16.35 | 1570 | $\mathrm{C}_{9} \mathrm{H}_{2}, 1 \mathrm{~N}_{2} \mathrm{O}$ | 59.33 | 59.61 | 6.09 | （i．05 | 15．35 | 15.41 |
| trans－1，4－Cyclohexylone | Cil | | 86 | >280 dec | 1625 | 1565 | $\mathrm{C}_{22} \mathrm{I}_{23} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$ | 4）． 30 | 49.43 | 7.59 | $7.4 \times$ | 19.17 | 19.11 |
| p－Phenylene | B：4 | | 82 | $270-273$ dec | 1635 | 137i | $\mathrm{C}_{12} \mathrm{IH}_{16} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$ | 50.34 | 50.80 | 万． $0: 3$ | 万． $\mathrm{S}^{\text {c }}$ | 1！1．87 | 19.45 |
| B．（2，2，2－Triflumoethyl）ureas，RNII $\mathrm{OONHCH}_{2} \mathrm{CF}_{3}$ | | | | | | | | | | | | | |
| 2，2，2－Trifuoroethyl | 1） | | （i） | 155^{j} | 1645 | 1.595 | $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}$ | | | | | | |
| 2－Chloroethyl | Bai） | Benzene－cyelohexma | $62 \times$ | 116 | 1635 | 1580 | $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{ClF}_{3} \mathrm{~N}_{2}(1)$ | 29.35 | $\underline{9} 9.63$ | 3.94 | 4． 015 | 13．70 | 13．71 |
| Crablexy | Ba＇2 | | 41 | 142－144 | 16：30 | 1580 | $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$ | 48.20 | 48.49 | （6．7．） | （6． 311 | $1 \because$－0 | 12．70 |
| | | | | | | | | | | | | | |
| t－Buty | B1：2 | | $8 \overline{1}$ | 107－108 | 1630 | 1500 | $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{O}$ | 47.06 | $4 \overline{7} .2 \overline{7}$ | 8.40 | 8．3： | 15．68 | 15．7 |
| C－mmomblyy | 1315 | | 16 | 94 | 1630 | 15π | $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{ClN}_{7} \mathrm{O}$ | 37.17 | 3 B － 2 ？ | 万． 010 | 48 | $\because 6.011$ | 26.109 |
| 2－Bromoethy | 131．5 | | 77 | 103－104＂ | 16.30 | 1585 | $\mathrm{C}_{4} \mathrm{H}_{0} \mathrm{BrCCN}=0$ | | | | | 12.21 | 12．14 |
| －－Cyanoethyl | B1．3 | Fithand | 67.98 | 125 | 1635 | 1585 | $\mathrm{C}_{66} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}$ | 41.08 | 41.15 | 5.74 | 5． 71 | 23.93 | $\underline{24.15}$ |
| $\mathrm{I}_{2} \mathrm{NCOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{H}\right)$ | B6，${ }^{\prime \prime}$ | | 41 | 153） 15% | 1720° | 1560 | $\mathrm{C}_{8} \mathrm{H}_{44} \mathrm{CiN}_{3} \mathrm{O}$ ， | 38．15 | 37.78 | 5.61 | \therefore－ 41 | 11．711 | 16.4 |
| $110.4 \mathrm{CCII}\left(\mathrm{NH}_{2}\right)\left(\mathrm{CH}_{2}\right)_{4}$ | Bbo | | $41)$ | ~ 200 | 1620 | 1575 | $\mathrm{C}_{3} \mathrm{H}_{28} \mathrm{ClN}_{4} \mathrm{O}_{4}$ | 42.94 | 42．64 | 7.21 | 7．111 | 1ti．70 | 16．4： |
| $\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CCHI}_{2} \mathrm{CIH}_{2} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{CII}_{2}{ }^{3}\right.$ | Bas | | 58 | 75 | $174 i^{-k}$ | 1575 | $\mathrm{Ci}_{10} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}$ | 42.78 | 4.80 | 6． 11 | －5．91 | 0.98 | 10.04 |
| $\underline{2}$ ，6－1）ioxo－3－piperidyl | Bl 4 | Acetonitrile | 56－91 | 180－181 | 1710^{\prime} | 1580 | $\left(\mathrm{C}_{8} \mathrm{II}_{2} \mathrm{CCO}_{3} \mathrm{O}\right)_{3}$ | 41.12 | 41.29 | 5.15 | － 3 | 17.9 | 15.90 |
| Cymbenty | $\mathrm{Bl} \%$ | Aceomitrile | 6 s | 115 | 1630 | 1590 | | 80.39 | 511．3．7 | 7.94 | 7．7 | 1．7．714 | 11×2 |
| 1－Mothylayementyl | B12－2 | Acctomitrile Water | 64 | 92 | 16：3 | 1575 | $\left.\mathrm{C}_{9} \mathrm{H}_{77} \mathrm{Cl}^{\left(1 \mathrm{~N}_{4}\right.}\right)$ | 2）． 81 | | $8: 3$ | $\times 3$ | $1: 69$ | 13．62 |
| 1－Pithoxyammmylerdonenty | 1312 | | S4 | 140 | 17 （2）${ }^{\prime \prime}$ | 156 | $\mathrm{C}_{3} \mathrm{H}_{44} \mathrm{ClNa}_{2} \mathrm{O}_{3}$ | 30.28 | 50.40 | 7．9 | －i | 10．6t | 10．51 |
| （abloheryl | Bl） | | 74 | $1331{ }^{\circ}$ c | 10.30 | 159．5 | $\mathrm{C}_{3} \mathrm{II}_{17} \mathrm{ClNa}$ | | | | | | |
| 1－Methylcydohexyl | Bb： | （ Selobexane | si | 100 | 1630 | 1560 | $\mathrm{C}_{30} \mathrm{H}_{4} \mathrm{ClNa}_{40}$ | T4．84 | －4．03 | S．72 | －．76 | $1 \because s 1$ | tig．is |
| 2－Medyyderchexyl | B13） | Acotonitrile－water | 19 | 70 | 1620 | 150） | $\mathrm{C}_{10} \mathrm{II}_{21} \mathrm{ClN}_{2} \mathrm{O}$ | 91．84 | 54.61 | s．i－ | －5． 0^{1} | 12．81 | 12． i 3 3 |
| 3－Methylerelohexyl | Bb：${ }^{\text {a }}$ | Acetonitrile | ： 1 | 132－13－1 | 1020 | 1585 | $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}^{\prime}$ | 54.84 | त5．08 | 8.7 | S．tioj | 1－st | $1 \because 7$ |
| 4－Methylerclohexyl | BL？ | | n！ | 140 | 1625 | 1 LS 0 | $\mathrm{C}_{60} \mathrm{H}_{59} \mathrm{ClN}_{2}(\mathrm{O}$ | T4．84 | －4．9－1 | 8.12 | S．$\overline{6}$ | 10．81 | 12．90 |
| $3,3, \overline{0}$－I rimethylcyclohexyl | $\mathrm{Bb}-$ | Hexame | 4－73 | 91 | 16.5 | 1080 | $\mathrm{C}_{12} \mathrm{IH}_{3} \mathrm{Cl}_{\mathrm{N}}(0)$ | ［58． 41 | $58.5 \overline{5}$ | 9.411 | 9， 51 | 11．35 | 11．：4 |
| trans－4－t－Butyleydohexyl | B12 | | 8 | 1：3－134 | 16.5 | 1570 | | 598 | 6010 | 9.18 | 9.44 | 10.74 | 111.79 |
| cis－－${ }^{\text {c－Chlorocyclohexyl }}$ | Bbı | Bamene－crathexame | 84.97 | 130 | $16^{29} 1$ | 1 j 60 | $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{4} 0$ | 45.20 | －15．2s | 6.74 | （i．it | 11.7 | 11 m |
| trans－2－Chlorocyclohexyl | $\mathrm{Bl} \mathrm{O}^{2}$ | | 78 | 136 | 16.31 | 1580 | $\mathrm{C}_{3} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ | 45． 20 | 45.32 | 6.74 | | 11.75 | 11．74 |
| cis－2－Ilydroxycychohexy | Bli？ | | （6） | 135 | 163．7 | | $\mathrm{C}_{9} \mathrm{H}_{77} \mathrm{ClN}_{2} \mathrm{O}_{2}$ | 45．98 | 49.10 | 7．73 | 7．in | 12． 6 （1） | 12．75 |
| 1－Ethoxymatonyligelohexyl | Bbı | Acetomitrile Watcer | 84 | $81-83$ | 1735＂ | 18in | $\mathrm{C}_{42} \mathrm{H}_{2}, \mathrm{ClN}_{2}()_{3}$ | 52.07 | 510：3 | － 6.0 | 7.71 | 10．12 | （1．91i |
| 4－Ethoxycarbonyleyclohexyl | Bb？ | | 81 | 858 | 173\％ | 1500 | $\mathrm{Ca}_{12} \mathrm{IH}_{2} \mathrm{ClN}_{2} \mathrm{O}$ | 52.05 | 二小 15 | 7.65 | 7．51 | 11）12 | 10.31 |
| 1－1＇henyleydohexy | B12 | | 9．4 | 130 | 1635 | 1506 | | 6．3．98 | （64． 3 － | 7．84 | － 94 | ！）！${ }^{\text {a }}$ | （1）．14－4 |
| 2－Nortormel | Bb | Benternt | 73 | 126 | 16：\％ | 1575 | Cellacinu | －5． 42 | （5）$\overline{5} 4$ | 7.91 | 7． 5 | 12．！1； | 12.94 |
| －Bomy | Bb： | Fithamel witer | 36 | 138 | 16：${ }^{-}$ | 15601 | | （it） 303 | （\％）． 4 － | － 816 | －．tut | （1）mis | 111．8i |
| 2－Oxori－1， | Bb： | | 13 | 12．195 | $17.5 \times$ | | | 74．15 | 5\％H4 | － 7 － | －．in | （11） | $10 \cdot 9$ |

1-Adamantyl	Bb2
Cycloheptyl	Bb3
Cyclooctyl	Bb3
Cyclododecyl	Bb3
5α-Cholestan-3 α-yI	Bb2
2-Indanyl	Bb2
p-Fluorophenyl	Ba5
o-Chlorophenyl	Ba5
m-Chlorophenyl	Ba 5
2,5-Dichlorophenyl	Bl 3
4-Amino-3,5-dichlorophenyl	Bb3
o-Tolyl	Ba3
α, α, α-Trifluoro-p-tolyl	Bb3
2,6-Xylyl	Bb3
m-Nitrophenyl	Bb6
m-Methoxyphenyl	Bb3
\boldsymbol{p}-Cyanophenyl	Ec1
o-Carboxyphenyl	Bb2
m-Carboxyphenyl	Bb3
p-Carboxyphenyl	Bb3
\boldsymbol{p}-Ethoxycarbonylphenyl	Bb3
p-Acetylphenyl	Bl) 5
p-(Dimethylcarbamoyl)phenyl	Bb3
p-(Methylthio)phenyl	Bb3
m-(Fluorosulfonyl)phenyl	Bb3
p-(Fluorosulfonyl)phenyl	Bb3
p-(Carboxymethyl)phenyl	Bb3 ${ }^{\text {x }}$
p-(Carboxymethylthio)phenyl	Bb3 ${ }^{x}$
p-(3-CarboxypropyI) phenyl	Bb6
5,6,7,8-Tetrahydro-2-naphthyl	Bb5
2-Naphthyl	Bb3
3-Pyridyl	Bb2
1,2,3,4-Tetrahydro-2,4-diexo-5-pyrimidinyl	Bb4
8-Quinolyl	Bb3
9-Acridinyl	Bb6
trans-Vinylene ${ }^{\text {a }}$	Ba5
trans-1,2-Cyclohexylene	Bb2
trans-1,4-Cyclohexylene	Bb3
1,8-p-Menthylene	Bb3
o-Phenylene	Bb3
4-Chloro-o-phenylene	Bb5
4-Methoxy-m-phenylene	Bb5
5-Carboxy-m-pherylene	Bb4
p-Phenylene	Bb4
'Tetramethyl-p-phenylene	Bb3
4,4'-Biphenylylene	Bb4
Methylenedi-p-phenylene	Ed1
Oxydi-p-phenylene	Bb4

R	Methion：＂	Rearsstn solvem＂	Yold.?	$\mathrm{MI}_{1} .^{\text {d }}{ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{K}^{\mathrm{KB}} \\ C O \\ C O \end{gathered}$	CHN	Formbla	$\begin{gathered} \text {-Cart } \\ \text { Calcal } \end{gathered}$	（b）\％－ Fonml	$-\mathrm{fivh}$	 1：unnd	$\begin{gathered} \text { - Nitro } \\ \text { Caler } \end{gathered}$	m，军一 1：000．
Withiodi－p－phenglenc	1313	Dimethytormamide－cthamol	（i1－9！	242	1630	1585	$\mathrm{C}_{38} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{2}$	47.06	47.34	4.39	$4.4{ }^{-}$	12.70	12．2i）
2,6 －I yriclinediyl	BLI ${ }^{\text {a }}$	Ethamol	30	171－174 ${ }^{\text {a }}$	$1680^{* *}$	1595	$\mathrm{C}_{2} \mathrm{H}_{55} \mathrm{CH}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}$	41.26	41．4．3	4.72	4.68	$\bigcirc 0.85$	22.00
2－Chiorepropy	Fil	Benzene petr ether	33	~ 105	$16: 30$	1570	$\mathrm{C}_{7} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{~N}_{2}()$	39.45	39.08	（6．63）	6.50	13.14	13.15
Crclohexy	Bb ${ }^{2}$	Acetomitrile water	～： 1	131	1625	1505	$\mathrm{C}_{10} \mathrm{IH}_{19} \mathrm{CliN}_{2} \mathrm{O}$	54．9S	54.84	8.76	S． 64	12.81	12．76
1－（Chloromethyl）propgl	I		47	123	16330	1565	$\mathrm{C}_{9} \mathrm{H}_{58} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$	44.85	45.02	7．53	7.61	11.02	11.6 s
Cralohexy	B 13	Acetonitrile water	1ij	129	1620	1560	$\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{ClN}_{2} \mathrm{O}$	56.86	56.87	9．09	9.00	12.04	12.15
2－Chlom－1，1－dimethylethy	$1: 1$	Acremitrile water	~ 44	126	1635	1565	$\mathrm{C}_{3} \mathrm{HI}_{48} \mathrm{Cl}_{2} \mathrm{~N}_{2}()$	44.82	44.50	7.32	7.5	11.01	11.51
Crahexy	ぼ心	Acetomitrile water	67	195	1625	1570	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{ClN}_{2} \mathrm{O}$	50.76	50.80	9.09	$\therefore .04$	110101	12.02
Methyl	Ba＇	Benzene－hexame	75	137	1625	1580	$\mathrm{C}_{8} \mathrm{H}_{55} \mathrm{ClN}_{4} \mathrm{O}$	50.319	50.44	7．93；	8.04	14.70	14.85
cis－（2－Chlorocyclohexyl）	Ce	Acetonitrile	$36-75$	200	1630	1560	$\mathrm{C}_{13} \mathrm{II}_{292} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$	53．25	53.25	7.57	7.60	9，万5	9.63
Mctisy	B：12		（）－	15\％	1630	$158 \overline{5}$	$\mathrm{C}_{88} \mathrm{It}_{2} \mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{O}$	50.30	50.54	7．9．；	7.86	14.70	14.67
	Ce		65	193	1630	15,60	$\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}$	53］．25	5：3．26	7.57	7.05	（1）\quad \％	9 9 5－
\therefore－Cbloromopy	Fh		90	71.73	1620	1575	$\left({ }_{7} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}\right)$	39.45	39.81	（6． $6: 3$	（5．）1	13．14	13．05
Coclohexy	138		97	10：，	1630	1580	$\left({ }_{60} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{Na}_{2}\right)$	54．0S	54.90	8.76	8． 77	12st	12． $6: 5$
Phengl	Bb：		$7!$	130	1635	1560	$\mathrm{C}_{70} \mathrm{IH}_{17} \mathrm{CLN}_{2} \mathrm{O}$	56.61	－6．2：；	0.15	（6．90）	1：3．31	13.08
$0-\mathrm{Ph}(\mathrm{m}) \mathrm{y}$（e）：	B1，6		6 s	260 der	1620	1580	$\mathrm{C}_{44} \mathrm{IL}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}$	48.10	48．3以	5． NO	5.79	211.43	20.40^{3}
$\because-$ Bromexthyl	Li＇		（i）	124－125	1625	1590		2 a （92	21.91	3.6	： 70	111．23	10．06
Crablexyl	13：45		75	148－150	1625	1585	$\left({ }_{4} \mathrm{H}_{27} \mathrm{Pr}^{2} \mathrm{~N}_{2} \mathrm{O}\right.$	13．法	43.75	（0．ss	6． $6: 1$	11.15	11.22
－Iorloethys	1		73	15\％ $50{ }^{\circ}$	1615	1585						； 11	7.131
Cychoment	（：	Ethanol	10	110	1625	1575		：3．tit	： 4.24	S． i_{6}	5．0．1	（1） 11 ）	9.6
Phenyl	（：	Lethanol water	$45-95$	15， $\mathrm{l}^{\text {d／}}$	1630	150	$\mathrm{Cy}_{4} \mathrm{H}_{1} \mathrm{INs} \mathrm{N}^{(0)}$						

of decomposition products. For example, the pmr spectrum of 1,1'-pentamethylenebis(3-methyl-3-nitrosourea) (8) showed no split methyl absorption and therefore no randon, nitrosation, whereas the previous ${ }^{2 a}$ assignment was made on the basis of an 18-29\% yield of 1,1'-pentamethylenebis(3-ethylurea) isolated after treatment of 8 with ethylamine. The utility of pnir spectroscopy fails in the case of nitrosoureas substituted by alkyl-branched chloroethyl groups because of severe overlapping of signals, but the structure of 1-(2-chloropropyl)-3-cyclohexyl-1-nitrosourea (9) was reliably established by a 99% conversion to 1,3 -dicyclohexylurea with cyclohexylaninie in water.

The elimination of hydrochloric acid and its interference with normal urea formation ${ }^{2 a, 9}$ characterizes the aqueous deconıpositions of chloroetliylnitrosoureas and niust be taken into account when such reactions are used for structure proofs or synthetic purposes. Studies of the aqueous decomposition of BCNU, which will be reported in detail later, pernits the following over-all equation (1) to be written. 2 -

$$
\begin{equation*}
1+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{ClCH}_{2} \mathrm{CH}_{2} \cdot \mathrm{NH}_{2} \cdot \mathrm{HCl}+\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{N}_{2}+\mathrm{CO}_{2} \tag{1}
\end{equation*}
$$

Chloroethyl isocyanate, a prinıary deconıposition product emanating froln the unnitrosated side of BCNU, is the source of the 2-chloroethylamine, which is neutralized as it is formed by hydrochloric acid released from the nitrosated side of BCNU and thus caunot add to unhydrolyzed isocyanate. A stronger base will free 2-chloroethylamine from its salt and nıake it available for urea formation. Thus, when the aqueous decomposition of BCNU was carried out in the presence of 1 nolar equiv of triethylanine, 1,3 -bis(2 -chloroethyl)urea precipitated in 70% yield. When triethylamine was replaced by cyclohexylanine (eq 2), the product isolated in 36% yield was 1-(2-chloroethyl)-3cyclohexylurea (3a); with 2 molar equiv of cyclohexylamine, one as reagent and one as proton acceptor, the yield of 3 a was increased to 84%.

Triethylamine can be used to conserve an expensive or rare anine. For example, fronı 2-fluoroethylanine hydrochloride, 3-(1-adanıantyl)-1-(2-chloroethyl)-1-nitrosourea (10), and an excess of triethylamine in aqueous acetone there was obtained a good yield of 1-(1-adamantyl)-3-(2-fluoroethyl)urea (11) (eq 3). Aqueous decomposition of fluoroethylnitrosoureas in the presence of amines is apparently not complicated by release of hydrofluoric acid, since the reaction (eq 4) of 1,3-bis(2-fluoroethyl)-1-nitrosourea (12) with 1 nolar equiv of cyclohexylamine produced an 85% yield of 1-cyclohexyl-3-(2-fluoroetliyl)urea (3c), which is consonant with the usual behavior of nitrosoureas. ${ }^{9.2 a}$

This view was subsequently supported by the identity of 1,3-bis(2-fluoroethyl)urea and 2-fluoroethanol as products of the decomıposition of 12 in dilute, aqueous solution. In apparently saturated aqueous solution, however; 12 was surprisingly stable; after 14 days at roon tenıperature at least 80% was recovered unchanged.

The effect of water on isomer ratio was first observed in the nitrosation of 1-(2-bronoethyl)-3-phenylurea, the nitrosation of which with solid sodium nitrite in 85% formic acid gave an approximately $1: 1$ mixture of isoniers $\mathbf{5 a}$ and $\mathbf{5} \mathbf{b}$, whereas in $98-100 \%$ formic acid only 5a was obtained. Deconıposition of 5a with aniline (1 molar equiv) in aqueous dioxane gave the expected carbanilide, but unexpected cyclization occurred with the more basic cyclohexylanine, resulting in the isolation of 1-nitroso-3-phenyl-2-imidazolidinone (13) (eq $\overline{5}$). The presence of water had a similar effect on the nitrosations of 1-(2-chloroethyl)-3-phenylurea (Figures 1 and 2) and 1-(2-chloroethyl)-3-cyclohexylurea (3a). Nitrosation of $\mathbf{3 a}$ in undiluted fornic acid with an equal volume of aqueous nitrite solution ($\overline{5}-$ 6%) gave a mixture of isoniers (about $65 \% \mathbf{1 4 a}$ and 35% 14b). Furthernore, these isonıeric nixtures were converted to the pure isomers 5a, 7a, and 14a

in high yields by solution in cold, undiluted formic acid and, after a while, reprecipitation by addition of water; the reverse process was not effected in aqueous acid. Transfer of the nitroso group in formic acid probably involves the formation of formyl nitrite (15), which has apparently been detected spectroscopically in solutions of dry nitrite in 85% formic acid. ${ }^{10}$ Such

$$
\mathrm{mN}^{-1}{ }^{-1}
$$

rimmola
Colarbin，rimem

Coben
Nitmentr－ A．Nethylmitrosontens，ISNHCON（NO）CII：

$\underline{2-F i n o m o c t h y ~}$	S4．7	3 A HCl	140	374	9	$53-55$	1710	1530	$\mathrm{Cr}_{4} \mathrm{H}_{8} \mathrm{FN}_{5} \mathrm{O}_{2}$	32.21	32.81	5． 41	5.46	12．7．4	12.9
cis－2－Chborocychohexyl	2.6	$\mathrm{HCO} \mathrm{O}_{2} \mathrm{H}$	7	7.3	90	60 dec	1725	$15: 30$	$\mathrm{C}_{8} \mathrm{IH}_{4} \mathrm{ClN}_{4} \mathrm{O}_{4}$	43.73	4．3．85	6.42	6.44	19．13	$1!14$
trans－2－（ hilorocydohexyl	28.7	［1（20）${ }^{2}$	（1）	（ 5^{5} ． 3	90	121 dec	1700	1555	$\mathrm{C}_{8} \mathrm{H}_{44} \mathrm{ClNaO}_{4} \mathrm{O}_{4}$	43． 73	48.80	6.42	（6．2）	19．13	19．20

2－Fihuruethys	30.1	$3 \mathrm{Al\mid Cl}$	80	106	8.5	30． 34	1725	1530	$\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right.$	$3 \cdot 15$	32.87	5.101	5.38	$\underline{3} \cdot 20$	29．95
$\underline{-C}$ Cbloroethyl＇	8.0	12 NHCl	S	22	80	Oil	1790	1530	$\mathrm{C}_{3} \mathrm{IH}_{9} \mathrm{ClH}^{(1)} \mathrm{N}_{3} \mathrm{O}_{2}$	30.30	30.36	4 4，	5． 12	$\underline{11.27}$	21.1
Crolohexyl	36.0	$\mathrm{IlCO} \mathrm{O}_{2} \mathrm{H}$	（6）	15%	70	34－37	1720	$15 \% 0$	$\mathrm{C}_{6} \mathrm{I} \mathrm{H}_{6} \mathrm{~F}^{\prime} \mathrm{N}_{2} \mathrm{O}_{2}$	4！ 16	50.02	7.42	7.46	1！ $12 \cdot 1$	19，${ }^{\text {a }}$
trans－4－t－Pntylegedocxyl	1.2	HCOH	10	－1．4	74	76 dee	1795	1525，	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O}_{2}$	57．13	56.86	8.85	S．70	15． 3	15． 34
Q－Norlarny－1	1.5	61 IICl	111	7.4	Ts	63－67	1090	15%	$\mathrm{Ci}_{40} \mathrm{H}_{15} \mathrm{I}^{\prime} \mathrm{N}_{3} \mathrm{O} \mathrm{O}_{2}$	50．39	52.41	$\overline{7} .14$	7.20	15．3n	18．13
1－Adamanty	9.6	$\mathrm{HCO} \mathrm{CO}_{2} \mathrm{H}$	75	：$: 3$	$8: 3$	102 dee	17：30	15\％	$\mathrm{C}_{31} \mathrm{ll}_{20} \mathrm{FN}_{3} \mathrm{O}_{2}$	5\％¢	5\％．86	7.48	7.35	1．5．6i	15．43
5_{α}－Chelertan－3 $\alpha-y \mathrm{l}$	0.42	$11 \mathrm{CO} \mathrm{O}_{2} \mathrm{II}$	10	7.8	8115	99 dee	1783	1：20		71.25	71.28	10.36	10.34	8．3t	\％．1s
Phenyl	15．6	$11 \mathrm{CO} \mathrm{O}_{4}$	30	70.0	8	819． 85	1740	1541	$\mathrm{C}_{49} \mathrm{H}_{21} \mathrm{H}^{\prime} \mathrm{N}_{3} \mathrm{O}_{2}$	51.18	51．18	4.77	5． 00	1！1！ 011	19．71
mons－1，4－Cyclohexylone	1.0	$\mathrm{IICO} \mathrm{O}_{2} \mathrm{H}$	15	14.5	41	186 dec	1695	1533	$\left.\mathrm{Cr}_{\underline{2}} \mathrm{H}_{2,2} \mathrm{H}_{2} \mathrm{~N}_{6} \mathrm{O}\right)_{4}$	415	41． 5	6．0：3	5.94		\bigcirc
	0.67	$110 \mathrm{O}_{2} \mathrm{II}$	$:$	$\underline{2}$	： 6	54	1780	$1556{ }^{6}$	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}$	－ 0 － 7	2：3．75	1.919	$\underline{19}$	16． 615	tit．in
Cyelohexy	1.3	HCOM	4	1.1	Sx	54	$1720{ }^{6}$	1544	$\mathrm{C}_{41 \mathrm{I}}^{14} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}$	$4{ }^{4}$	42．7．4	5.58	万． 69	16． 614	16．4t

\cdots－Bramocthy ${ }^{\prime}$	27.0	$\mathrm{IlCO}_{2} \mathrm{H}$	50	11：9	7i）	30－81	1795	15.311	$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{BrCCl} \mathrm{N}_{4} \mathrm{O}_{4}$	2：3．3	里 16	： 3	8.64	16．25	16.44
2. （i－l iono－3－piperidyl	19.3	［10） $\mathrm{O}_{2} \mathrm{IL}$	［t）	84.0	4	154 dec	170：）	1530	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{CliN}_{4} \mathrm{O}_{4}$	36.80	36.51	4.2	4．42－	$\underline{21.3: 3}$	$\because 6$
Cyelonentyl	29.5	$6 \times \mathrm{HCl}$	20^{50}	81.2	45	Oil	1790	1525	$\mathrm{C}_{8} \mathrm{II}_{44} \mathrm{Cl}^{(1)} \mathrm{N}_{3} \mathrm{O}_{2}$	4i3． 74	44.18	6． $4 ?$	0.75	1！1．1：3	1s．94
1－Methyleycopentyl	2.4	$\mathrm{ILCO} \mathrm{O}_{2} \mathrm{Il}$	5	7.3	（i）	Oil	1730	1520	$\left(\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{4}\right.$	46.25	46.0 .5	6． 90	6.84	17．！	ti 61
1－1：thoxyerbonylegelopenty	17．2	$\mathrm{H} \mathrm{CO}_{2} \mathrm{II}$	511	（6）．${ }^{\text {a }}$	\bigcirc	44－45	$1735{ }^{\text {c }}$	1510	$\mathrm{Can}_{3} \mathrm{ClNa}_{3} \mathrm{O}_{4}$	45.44	4.584	ti． 2.5	6.34	11.45	t．1．19
Cychohey	4.9	$11.0 \mathrm{O}_{2} \mathrm{H}$	15	14.5	－－1	90	17.10	1545	$\mathrm{C}_{4} \mathrm{H}_{46} \mathrm{Cl}_{1} \mathrm{~N}_{3} \mathrm{O}_{4}$	46.25	$46.41)$	（5．91）	6.9 .4	17．96	tior
Craborexy＂	40	IICO2 H	（1）	94^{\prime}	94	70 der：	170．）	15%	$\mathrm{C}_{9} \mathrm{H}_{1 \mathrm{l}} \mathrm{C} \cdot \mathrm{NN}_{3} \mathrm{O}_{4}$	46.25	46.84	（i．） 0	7．14	17 ¢	17.85
1－Xethylcrathexy	4.6	I1CO211	12	14．5	5	Oil	17.30	1520	$\mathrm{C}_{30} \mathrm{IH}_{5} \mathrm{ClN}_{3} \mathrm{O}_{4}$	48.45	4.50	7．33	7．4．4	16.9	16．7！
3－Methylaychoryl	2.3	$1 \mathrm{CO} \mathrm{O}_{2} \mathrm{H}$	111	7.8	s1	80 dee	1700	1535	$\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{ClN}_{38} \mathrm{O}_{2}$	48．4N	45.7	7． $3: 3$	7．29	16.97	16．62
4－Alethyleyclohexyl	2．${ }^{2}$	$11 \mathrm{C} \cdot \mathrm{O}_{2} \mathrm{I} 1$	10	7.8	$7!1$	64 dee	1700	1535	$\mathrm{C}_{40} \mathrm{H}_{15} \mathrm{ClN}_{3} \mathrm{O}_{2}$	48.48	4，6\％	7.33	7．33	119．97	16.90
3，$\overline{3}, \overline{\text { a }}$－l＇rimethylcy lohexyl	2.0	$\mathrm{HCO}_{2} \mathrm{II}$	8	7．$:$	64	Oil	1725	1520	$\mathrm{C}_{2} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{2}$	52． 29	8 Ca	7．6s	7．s！	15．9	15．25
trans－4－t－Butyleyclohexyl	1.9	$\mathrm{HCO}_{2} \mathrm{H}$	（t）	7.8	（1）	80 dee	1739	15010	$\mathrm{C}_{3} \mathrm{H}_{41} \mathrm{ClN}_{3} \mathrm{O}_{2}$	万3． 88	\％） 96	8.35	8.96	14．4！	14．5 2
cis－2－Chlorocyrlohexyl	$\underline{1} 1$	$11 \mathrm{CO}_{2} \mathrm{H}$	15	7.3	s！	97 dec	1700	1525	$\mathrm{C}_{9} \mathrm{H}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$	40.31	40．5．）	¢． 64	］． 6 K	15.67	15．6t
trans－2－Chlorocyelohexyl	13.0	$11 \mathrm{CO} \mathrm{O}_{2}$	－${ }^{\text {a }}$	4：3．5	89	95 dec	170）	1530	$\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}\right.$	40.31	411．1：3	5． 6.4	5． 7.3	15．67	15．
1－Bthoxycarbonylcyclohexyl	1.7	$11 \mathrm{CO}_{2} \mathrm{H}$	$\bar{\square}$	19.6	60	56.65 dee	1730	1：59）	$\mathrm{C}_{4} \mathrm{H}_{20} \mathrm{ClN}_{4} \mathrm{O}_{4}$	47.14	47.16	6.09	1． 4 s	13．74	13．0\％
2－Norbornyl	24.1	$\mathrm{HCO}_{2} \mathrm{H}$	130	7\％． 3	91	$42-45$	169.	$153 \overline{3}$	$\mathrm{C}_{40} \mathrm{IH}_{16} \mathrm{ClN}_{3} \mathrm{O}_{2}$	45.88	49.18	6.87	（0．8．）	17.10	17．13
2 －Bornyl	1.4	$116.0 \mathrm{O}_{2} \mathrm{II}$	7	T． 8	N＇	Oil	1725	1590	$\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{ClN}_{10} \mathrm{O}_{2}$	54.25	24．11	7.71	7．79	14．6t）	14.76
1－Adamantyl	1.1	$\mathrm{HCO})_{2} \mathrm{H}$	211	4.4	9 j	74 der：	1725	1－35	$\mathrm{C}_{33} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{3}$	54.63	54.54	7.05	－16	14.70	14． t \％
Crchoheptylm	4.6	$11 \mathrm{CO}_{2} \mathrm{H}$	10	14.5	60	Oil	17211	1520	$\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{ClN}_{3} \mathrm{O}_{2}$	$4 \times .45$	48.43	7.36	7．1s	16.97	16.5
Crelododecy	1.7	$11 \mathrm{CO} \mathrm{O}_{2} \mathrm{H}$	25	14．is	97	as dee	17t）	153.3	$\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{ClN}_{3} \mathrm{O}_{2}$	50.67	30.85	S．8S	－．94	13：	1： 12
$\overline{\text { a } \alpha \text {－Cholestan－3o－y }}$	0.61	$\mathrm{HCO}_{2} \mathrm{H}$	1i）	4.1	$7!$	92 dee	1731）	（5020	$\left.\mathrm{C}_{40} \mathrm{I} \mathrm{I}_{32} \mathrm{ClN}_{3} \mathrm{O}\right)^{4}$	69．04）	60．012	10.04	（1）！${ }^{2}$	15．79＂	（i． $80{ }^{\text {a }}$
－Indemer	2.1	$11 \mathrm{CO}_{2} \mathrm{II}$	10	7.3	84	s1 dee	1720	1500	$\mathrm{C}_{12} \mathrm{H}_{44} \mathrm{ClN}_{3} \mathrm{O}_{2}$	5．3．54	53.6	5.20	$\therefore .43$	15．70	1．5． $\mathrm{F}^{\text {a }}$
Phemyl	35.3	$1 \mathrm{CO}^{(0211}$	1tt）	125	（iti	95）dee	17－5	¢ら̄̆ 1	$\mathrm{C}_{9} \mathrm{H}_{60} \mathrm{CN} \mathrm{Na}_{3}$	4.48	45	1.43	4， $\mathrm{i} \%$	15．4．4	15.5

$$
\begin{aligned}
& \left({ }^{\prime} \mathrm{ICH}_{2} \mathrm{CH}_{2} \mathrm{NHCONR}+\mathrm{HCO}_{3} \mathrm{H} \rightarrow\right.
\end{aligned}
$$

$$
\begin{align*}
& 15 \\
& \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{NCONHR}^{2}+\mathrm{HCO}_{2} \mathrm{H} \tag{6}\\
& \text { N() }
\end{align*}
$$

a mechansm may be depicted as shown in ed 6 . Ther isomeric composition may depend on an equilibrimm governed by the relative stability of the isomers toward nitroso group abstraction by formic acid, and apparently, with increasing water concentrations, there is a point above which abstraction does not occull. In an afueous system, formation of isomers may not be reversible, and the isomer ratio may therefore depencl prinarily on rolative rates of fomation. It was subsequently demonstrated that intermoleculan transer of nitroso groups can also occur. When a stirred solution of an equimolar mixture of 1 -(2-chloroethyl)-3-(y) yohexylured (3a) and 1,3-dicyclohexyl-1-nitrosourea (16) in formice aciel was diluted with water, after I he the product that precipitated consisted of 1 -(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (14a) in addition to the starting naterial and undoubtedly 1 , is-dicyclohexylurea (17). The product composition, estimated from a thin layor chematogran, was consistent with an equilibrium that favors the more stable $\mathbf{1 4 a}$. The equilibrium was also established from the reverse direetion, i.e., from 14a and 17 (eq7).

16

17
The exclusive formation of $\mathbf{1 4 a}$ in anhydrous nitrosations of $3 \mathbf{a}$ and the relative instability of the isomer 14b are attributed to steric hindrance due to the cyclohexyl group. Steric factors are partially comerter acted by electron withdrawal in the nitrosation of 1 -cyclohexyl-3-(2,2,2-trifluoroethyl)urea under the conditions that ufforded pure $\mathbf{1 4 a}$, the formation of $18 a$ being slightly favored over that of $\mathbf{1 8 b}$. Steric effects are not as marked in the nitrosations of the cyclopentyl and cycloheptyl analogs of 3a. The approximately $3: 1$ ratio of $\mathbf{4 a}: \mathbf{4 b}$ in the isomerie nixture obtained from the nitrosation of 1-(2-chloroethyl)-3cyclopentylurea in $6 N$ hydrochloric acid was not significantly affected by nitrosation in formic acid under essentially anhydrous conditions, and the isoner content of 1-(2-chloroethyl)-3-cycloheptyl-1-nitrosourea (19) obtained under the same conditions was about 20%. A methyl branch enhanced the steric: effect in 1. We preparation of 1 -(2-chlorocthyl)-3-(1-methyleyclo-

Table III
Conprormation or cis- and trans-2-Chiorocyelohexylureas and -nltrosoureas ${ }^{n}$

trans

R	$\nu(\mathrm{CCl})$, cm^{-1}	$\nu(\mathrm{NH})$, cm^{-1}	
CH_{3}	Y	735	3320,3360
CH_{3}	NO	735	3290
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	H	735	3320,3358
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	NO	735	3340

NO
735
3300
${ }^{a}$ Infrared absorptions determined in pressed KBr disks.
pentyl)-1-11itrosourea (20a), and consequently only a trace of the unwanted isomer was detected. No isomeric contamination was detected in ethyl 1-[3-(2-chloroethyl)-3-nitrosoureido]cyclopentanecarb oxylate (20b), the position of nitrosation in the openchain hydantoate 2b having been reversed by steric hindrance. The randonı nitrosation of 1-cyclohexyl-3phenylurea (21), which was established by identity of 17 and 21 as products of decomposition with cyclohexylamine, further attests steric hindrance by the cyclohexyl group in view of the isoneric purity of 7a obtained under comparable conditions.

$\begin{aligned} \text { 18a, } Y & =H ; Z=N O \\ b, Y & =N O ; Z=H\end{aligned}$
20a, $\mathrm{R}=\mathrm{CH}_{3}$
b, $R=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}_{2}$

19

21

Yoshida has recently determined the conformation of V -(2-chlorocyclohexyl)benzamides ${ }^{11}$ and 2-chlorocyclohexylamines ${ }^{12}$ on the basis of axial and equatorial $\mathrm{C}-\mathrm{Cl}$ absorptions in the infrared. Extension of this method to conformational analysis of the ureas and nitrosoureas that have been prepared from cis- ${ }^{13}$ and trans-2-chlorocyclohexylamines ${ }^{14}$ (Tables I and II) leads to the conformations shown in Table III, in which axial chlorine atoms are cis and equatorial

[^2]chlorine atoms are trans. Therefore, the ureido function is equatorial in every instance, whereas Yoshida found the benzamido group in cis- N -(2-chlorocyclohexyl)benzamide to be axial. ${ }^{11}$ Of the series of 2-chlorocyclohexyl-substituted ureas listed in Table III only 1,3-bis(cis-2-chlorocyclohexyl)urea failed to yield a pure nitrosourea.

The reported four-step conversion of dimethyl trans-1,4-cyclohexanedicarboxylate to 1,4-cyclohexanediamine dihydrochloride ${ }^{15}$ provided the required intermediate in the preparation of 1,1'-(trans-1,4-cyclo-hexylene)bis[3-(2-chloroethyl)-3-nitrosourea] (22a). The trans configuration of the diamine dihydrochloride was assigned on the basis of the following comparisons: the melting point of the derived free base agreed with that reported for the trans-diamine, ${ }^{16}$ and the melting point ($350-351^{\circ} \mathrm{dec}$) of the analytically pure diacetyl derivative was somewhat higher than that (310$315^{\circ}$ dec) of N, N^{\prime}-(trans-1,4-cyclohexylene)bisacetamide and considerably higher than that (208-209 $)$ of the cis isomer as recorded by Nielsen. ${ }^{16}$ The NH stretching bands at $3290-3350 \mathrm{~cm}^{-1}$ shown by the nitrosoureas of Table III seem to be characteristic of equatorial nitrosoureido groups. On this basis the same conformation is indicated for the nitrosoureas derived from trans-1,4-cyclohexanediamine and trans-4-t-butylcyclohexylamine, ${ }^{17}$ for example, 22a (3360 cm^{-1}), the fluoro analog 22b (3320 cm^{-1}), and 3-(trans-4-t-butylcyclohexyl)-1-(2- chloroethyl)-1-nitrosourea (23) (3360 cm^{-1}). The urea 22c, from which 22b was derived, was prepared in two ways (eq 8): (a) protracted treatment of a solution of 2-fluoroethylamine hydrochloride in equal volumes of water, N,N-dimethylformamide (D\IF), and triethylanine with $1,1^{\prime}$-(trans-

[^3]

1,4-cyclohexylene)bis[3-methyl-3-nitrosourea] (24), and (b) treatnient of a cold solution of trans-1,4-cyclohexanediamine dihydrochloride in water first with excess triethylanine and then with 3 -(2-fluoroethyl)-1-methyl1 -nitrosourea (25). The second route is preferred because of convenience and soniewhat better yield.

Axial conformation for the nitrosoureido groups of 1-(2-chloroethyl)-3-(5α-cholestan- 3α-yl)-1-nitrosourea (26a) and the fluoroethyl analog 26b is deducible fron. the conformation of 5α-cholestane- 3α-amine ${ }^{18}$ from which they were derived. The infrared spectra of both $\mathbf{2 6 a}$ and $\mathbf{2 6 b}$ show NH stretching bands at $3430 \mathrm{~cm}^{-1}$ which is a higher wavenumber than those ($3290-3350$ $\left(\mathrm{m}^{-1}\right)$ already assigned to equatorial nitrosoureido groups; this difference is consistent with that previously reported for axial and equatorial benzamido groups. ${ }^{11}$ Since 1-(2-chloroethyl)-3-(1-methylcyclohexyl)-1-nitrosourea, which was derived from 1-methylcyclohexylamine, ${ }^{19}$ absorbs at $3420 \mathrm{~cm}^{-1}$, it is not unreasonable to assume that the axial conformation for the nitrosoureido group as shown in structure 27 is predominant.

The recent assignment of trans configuration to the product of hydrogenation of ethyl p-animobenzoate over platinum oxide in acetic acid ${ }^{20}$ pronpted an attempt to prepare ethyl trans-4-aninocyclohexanecarboxylate by the reported method for conversion to the corresponding chloroethylnitrosourea, but the product obtained was subsequently shown by vapor phase chromatography to be a mixture of nearly equal amounts of cis and trans isomers. The reported ussign-

[^4]

27
ment becane suspeet when the derived urea gave ethyl 4-[3-(2-chloroethyl)-3-nitrosoureido]cy clohexanecalboxylate (28) as an oil whose phir spectrun showed dis(repancies massociated with the position of nitros:tion.

28
During the course of preparation of ureas and nitrosoureas fron various phenylenediamines, effects of ring substituents such as those described in the following examples have been noted. Nitrosation was appareritly sterically controlled in the preparation of $1,1^{\prime}-$ (tetranethyl-p-phenylene)bis [3-(2-chloroethyl)-3-nitiosourea] (29), as no isomers were detected. The nitrosation of $1,1^{\prime}$-(4-methoxy-m-phenylene)bis[3-(2-chloroethyl)urea] (30) in formic acid, however, apparently

produced a mixture of all the possible bis(nitrosoureas), since a thin layer chromatogram showed four components, each different from the starting urea. Treatment of 2,6-dichloro-p-phenylenediamine with 2 molar equiv of 2 -chloroethyl isocyanate afforded 1-(4-amino-3,5-dichlorophenyl)-3-(2-chloroethyl)urea (31) in good yield and catalysis of the reaction by triethylamine in DIMF did not force further reaction of compound 31 with isocyanate to give the bisurea. Nitrosation of 31 in forninc acid with diy nitrite resulted in concomitant deamination (Scheme I) ; the yield of pure 1-(2-chloroethyl)-3-(3,5-dichlorophenyl)-1-nitrosourea (32) under the favorable conditions of long reaction tinne and large excess of
nitrite was about $50 \% .^{21}$ When the nitrosation of 31 was carried out in dilute hydrochloric acid, the isolated product was a mixture of the diazonium chloride 33 (about 53%) and the phenol 34 (about 47%) as judged from elemental analyses, the infrared spectrum, a thin layer chromatogram, and a positive Bratton-Xarshall test. ${ }^{22}$

The synthesis of DL-1-(2-chloroethyl)-3-(2,6-dioxo-3-piperidyl)-1-nitrosourea (39b) (eq 9) required the preparation of the intermediate DL-2-aminoglutarimide (38) by a four-step sequence beginning with DL-glutamine and patterned after published procedures. ${ }^{23}$ The reaction of benzyl chloroformate with dL-glutamine at about pH 9 afforded the benzyloxycarbonyl derivative 35 in $77-92 \%$ yield, sodium hydroxide being used instead of the specified sodium bicarbonate. ${ }^{23 a}$ A high yield of the DL-methyl ester 36 was conveniently obtained by treatment of the potassium salt of $\mathbf{3 5}$ witl iodomethane in DMF, thus avoiding use of diazomethane as in the reported preparation of the L isomer. ${ }^{23 b}$ Cyclization of 36 with sodium methoxide in benzyl alcohol provided benzyl DL-2,6-dioxo-3piperidinecarbanıate (37), which was also the product of a conversion of $\mathrm{L}-36$ under the same conditions. ${ }^{231}$, Attempted cyclization of DL-36 in methanol under conditions described for the conversion of L-36 without racemization ${ }^{23 c}$ resulted in either incomplete reaction or almost total recovery of starting material. Catalytic hydrogenolysis of $\mathbf{3 7}$ over 5% palladium-charcoal was equally effective in acidic and neutral media, ${ }^{23 c}$ but the resultant DL-2-aminoglutarimide (38) was more conveniently converted to the urea (39a) as the free base than as the hydrochloride.

The Gabriel synthesis of 2-fluoroethylamine hydrochloride as described by Childs, et al., ${ }^{24}$ provided the

[^5]
interniediate needed for the preparation of flworethyl analogs of the more promising chloroethylnitrosoureas. The fluoroethylation of potassium phthalimide with 2-fluoroethyl p-toluenesulfonate in DMF was found to be a convenient method for the preparation of N -(2-fluoroethyl)phthalimide (40a), hydrazinolysis of which, according to the published procedure, afforded a theoretical yield of white, crystalline amine hydrochloride in contrast to the "brown glass" reported previously. ${ }^{24}$ Its direct conversion to ureas was accomplished in two ways: (1) addition of isocyanates to the free amine, and (2) aqueous deconıposition of nitrosoureas in the presence of the free amine. But the aqueous deconiposition of 25 in the presence of an amine was sometimes the preferred method and a means of circumventing the preparation of the as yet unknown 2-fluoroethyl isocyanate as illustrated by the preparation of 1,3-bis(2-fluoroethyl)urea (41) (eq 10). The Gabriel synthesis was also applied, apparently for the first time, to the preparation of 2,2,2-trifluoroethylamine hydrochloride. The reaction of potassium phthalinuide with 1,1,1-trifluoro-2-iodoethane provided the intermediate N -($2,2,2$-triflıoroethyl)plithalimide (40b).

$\mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{NHCONHCH}_{2} \mathrm{CH}_{2} \mathrm{~F}$
(10)

41

Intermediates for the synthesis of nitrosoureas containing alkyl-branched chloroethyl groups as in 9 and 1,3-bis(2-chloro-1,1-diniethylethyl)-1-nitrosourea (42a)
(24) A. F. Childs, L. J. Goldsworthy, G. F. Harding. F. E. King, A. W. Nineham, W. L. Norris, S. G. P. Plant, B. Selton, and A. I. L. Tompsett, J. Chem. Soc., 2174 (1948).
were obtained by the action of phosphorus pentachlorike on appopriate ethyl 2 -hydroxylathytrathamatos ancording to the method of Wenker ${ }^{\text {rs }}$ as applied by Najer, et al., "6 for conversion of a (chloroalkyl) carbamate. Yapor phase chromatography showed that the 2 -chloroalkyl isocyanates so obtained were only it 94% pure even after fast distillation through a short cohmm. Because of acidi: impurities agueots decompositions of the crucle isocramates to give symmetrical 1,3 -fisubstituted ureas were camed out in the presence of the thylamine. The urea $42 b$ was particulanly unstable: a dry sample was eompletely cyelized to 2 -(2-chloro-1, 1-dimethylethylmino)-4,4-dimethyl-$\underline{-}$-oxazoline hydrochloride (43) after a few days.

Experimental Section

Melting pionts for which a range is recorded were determinerl on a Mel-Temp apparatus, those withont a range, on at Kofler Heizbank. The infrared spectra were determined in pressed KBr disks (solids) or films (oils) on a Perkin-Elmer spectrophotometer (either Model 221-G or 321). The pmr spertra were , btained in chlorofomm or dimethyl sulfoxide- d_{6} on a Varian A-fi) spectrometer with tetramethykilane as internal reference. Thin layer chromathgrams were developed on silica gel H (l:. Merck AG, Darmstadt) plates ninally with sheh solvent pair. as $9: 1$ benzene-chloroforn and $9: 1$ chloroform-methanol: nitrosonreas conld often be detected in nltraviolet light after -praying with Cltraphor WTTsolution; ineas, with Dragendorff montion; ${ }^{\text {se }}$ and both, by indine vapor. Nitrosonreas were stored dry and cold to minimize decomposition: 2-flooroethyl- and $2-$ chlowethylnitrosoureas that were kept moder such wonditionfor long periods showed no evidence of decomposition.
\mathbf{N}-(2-Fluoroethyl)phthalimide (40a),--A mixture of potassium phthatimide ($34.0 \mathrm{~g}, 0.183$ mole), 2 -flummethyl p-toluenesulf $($ nat $e^{24}\left(40.0 \mathrm{~g}, 0.18 .3\right.$ mole), and DIIF (300 ml) was stirred at 110° for 2.5 hr . The resulting solution was cooled a little, diluted with water (1.i) 1. ; ind chilled. The white precipitate was washed with water and dried in dacuo over $\mathrm{P}_{2} \mathrm{O}_{3}$. Rerrystallization of the crude prodm: (31.8 g) from absolnte ethanol $(200 \mathrm{ml})$ afforded $26.9 \mathrm{~g}\left(76 \%\right.$) , 40 a as white needles, mp $97-101^{\circ}$ (lit. ${ }^{24} \mathrm{mp} 160^{\circ}$).
2-Fluoroethylamine Hydrochloride. ${ }^{29}$-A mixture of 40a ($2(6.0 \mathrm{~g}, 0.135 \mathrm{~mole}$), hydrazine hydrate ($9.0 \mathrm{~g}, 0.18$ nole), and absolute eflamol (150 t) mil) was reflused for 1 hr. The resulting semisolid mixture was acidified to ubont plI 2 with concentrated
 π°, and filterod to remove phathydraide ($21 \mathrm{~g}, 96 \mathrm{c}$). The filtrate was evaporated to dryness in mocno and the residue was extracted with water. In vacuo evaporation of the filtered, aguens extract left hygroscopic arystals (18.4 g), which were atirred for \& hr with redistilled salicylaldehyde (16 ml) and chongh ether and henzene to dissolve the yellow solid that formed. The layers were separated and the aqueons phase was evaporated 10, drynes in vacho. The yield of white, trystalline 2 -fluoroothylamine hydrochioride (further dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$:

[^6]

 The resulting mixtmo was heated at 1100° bin is Irs condel to room temperatme, and dihted with water (1.2 l.! 'lhe preripitate was washed with water and air driod: vield of rmale

 mptian

1,1-p-Phenylenebis?3-(2-fluoroethyl)urea| (Method B). A
 20.3 mmoles in USIf: (15 mb) was treated with triethymme

 -tirred at ambint 1 (omperatme for abont $\because 4$ be, dihted with water flow mbt, ame chilled. The insoboble, finely divided. ream-adored bismea was eolleded, wabled wint water, atel

1-(2-Fluoroethyl)-3-methylurea,-․ Prethymme (1s.t ml,
 were melfed dropwine a a 05°, stimed solntion of 2 -fthoro-

 aribed above t $6 . \mathrm{s}_{\mathrm{g}}$. Two remretallizations of the combineal

 nreat

3-(2-Fluoroethyl)-1-methy|-1-nitrosourea (35)، --1)ry wotimm

 mere was stired amother t he at 05°, and the insoluble light

 -perthm was ielentieal with that of the amatyeal sample prepared ina pilot experiment.
1.1'-(trans-1,4-Cyclohexylene bis(3-methylurea) (...trans-
 in water (25 mall was made basic wath 万or, agnenns Natll (tis mul) and extrated with thee a-mal protions of ether. The

 -tirred at room temperame for $\underline{2}$ hr, then chilled. The bismera that had fommed was washed with ether :omd thied in rowo wor

1,1'-itruns-1,4-(cyclohexylene)bist 3-methyl-3-nitrosourea

 wather (100 ml), and -timed lior 30 min thore at $0-5^{\circ}$. The white predpitare was washed with water and dred in atom over Pat F :

1,1'-(tans-1,4-Cyclohexylene bis [3-(2-fluoroethyl)ureal (22c) (Method ('). A. From 1,1'-(trans-1,4-Cyclohexylene)-bis(3-methyl-3-nitrosourea) (24)...-A solntion of 2-flnoroethylamine hydrochloride ($-.23 \mathrm{~g}, 2.4$ monoles) in water (40 mb),
 ($3.20 \mathrm{~g}, 11.2$ mmole 1 and stirred at rom temperature for 2 days. The misture was comeentrated in pacuo to a volmme of abont 35 ml and diluted with water (10 ond m . The bismea 22c separated as : white solid which was washed with water and driod in rormo

(30) J.istillation Proderts lodus)ries, Roubester, \mathcal{A}.

B. From 3-(2-Fluoroethyl)-1-methyl-1-nitrosourea (25).-Triethylamine ($5.6 \mathrm{ml}, 40.2 \mathrm{mmoles}$) and, a few minutes later, $25(3.0 \mathrm{~g}, 20.1 \mathrm{mmoles})$ were added to a cold (ice bath), stirred solution of trans-1,4-cyclohexanediamine dihydrochloride ${ }^{156}$ (1.9 $\mathrm{g}, 10.0 \mathrm{mmoles}$) in water (75 ml). The mixture was stirred at room temperature for 18 hr , and 22c, which had precipitated as a white solid, was washed with water and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$; yield $2.5 \mathrm{~g}(86 \%)$. The infrared spectrum of 22 c from B was identical with that of the analytically pure 22 c from A.

Mixture (1:1) of 1-(2-Chloroethyl)-3-(2-fluoroethyl)-1nitrosourea and 3-(2-Chioroethyl)-1-(2-fluoroethyl)-1-nitroso-urea--Sodium nitrite ($9.7 \mathrm{~g}, 140$ mmoles) was added in portions over $2 . \overline{5} \mathrm{hr}$ to a $0-\bar{o}^{\circ}$, stirred solution of 1 -(2-chloroeth-1)-3-(2-fluoroethrl)urea ($2.8 \mathrm{~g}, 16.6 \mathrm{mmoles}$) it concentrated HCl $(25 \mathrm{ml})$. The mixture was diluted with water $(20 \mathrm{ml})$, and stirring was continued for 1.5 hr at $0-5^{\circ}$. Enough water ($\overline{5}$ ml) was added to dissolve the NaCl that had precipitated, and the oily mixture was extracted with three $25-\mathrm{ml}$ portions of CHCl_{3}. The dried $\left(\mathrm{MgSO}_{4}\right) \mathrm{CHCl}_{3}$ extract was evaporated under reduced pressure leaving an orange oil, which was further dried over $\mathrm{P}_{2} \mathrm{O}_{3}$ and NaOH ; yield $2.8 \mathrm{~g}(86 \%)$, $n^{2 \mathrm{Di} \mathrm{D}} 1.4890$. Pmr indicated a $1: 1$ mixture of isomers.

1-(1-Adamantyl)-3-(2-fluoroethyl)urea (11) (Method C).Triethelamine ($4.1 \mathrm{~g}, 40 \mathrm{mmoles}$) and then 3 -(1 -adamantyl)-1-(2-chloroethyl)-1-nitrosourea ($\mathbf{1 0})(\mathbf{4} .5 \mathrm{~g}, 16 \mathrm{mmoles})$ were added to a stirred solution of 2-fluoroethylamine hydrochloride (1.6 $\mathrm{g}, 16 \mathrm{mmoles}$) in water (100 ml). After 2 hr the suspension was thinned with acetone (20 ml), stirred for 2 dars at room temperature, and concentrated in vacuo to 100 ml . The white solid (3.0 g), washed with water and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$, was further purified by trituration in ether and recrystallization from acetonitrile; yield of $11,2.4 \mathrm{~g}(63 \%)$.

1,3-Bis(2-fluoroethyl)urea (Method C),-A $5-10^{\circ}$, stirred solution of 2-fluoroethylamine hydrochloride ($4.1 \mathrm{~g}, 41.2 \mathrm{mmoles}$) in water ($12 \overline{5} \mathrm{ml}$) was treated with 50% aqueous NaOH (2.2 ml) then, in portions over a 45 -min period, 3 -(2-fluoroethyl)-1-methy-1-1-nitrownea ($\mathbf{2 5}$) ($6.0 \mathrm{~g}, 40.3 \mathrm{mmoles}$); the resulting solution was stirred at room temperature for 18 hr . Removal of water in vacuo at 20° or below left a $6.6-\mathrm{g}$ residue which was extracted with ethanol (50 ml). Evaporation of the filtered ethanolic solution left the crude product (3.8 g), which was recrytallized from ethanol-petroleum ether ($35: 50 \mathrm{ml}$); yield $2.3 \mathrm{~g}(38 \%)$. The analytical sample was obtained in $\overline{2} 3 \%$ yield from a pilot experiment in which triethylamine (1 equiv) was used as base.

1,3-Bis(2,2,2-trifluoroethyl)urea (Method D).-A stirred suspension of 3 -($2,2,2$-trifluoroethyl)-1-methyl-1-nitrosourea ${ }^{23}$ (14.2 $\mathrm{g}, 76.8$ mnoles) in water (150 ml), triethylamine (2 ml), and acetone ($2 \overline{5} \mathrm{ml}$) was warmed slowly, kept at $\overline{7} 0-80^{\circ}$ for 1 hr as complete solution resulted, then refluxed for 30 min . The cooled, filtered solution deposited the product as a white solid which was washed with water and air-dried; yield $5.6 \mathrm{~g}(65 \%)$.

1-(2-Chloroethyl)-3-cyclohexylurea (3a) from Decomposition of Ethyl 5-(2-Chloroethyl)-3-nitrosohydantoate (2b) with Cyclo-hexylamine.-A suspension of $2 b^{2 a}$ ($500 \mathrm{mg}, 2.11 \mathrm{mmoles}$) in water (10 ml) was treated with cyclohexylamine ($208 \mathrm{mg}, 2.11$ mmoles) and stirred overnight at room temperature. The solid present, washed with water and dried in vacuo, was identical with authentic 1-(2-chloroethy-1)-3-cyclohexylurea with respect to infrared absorption, melting point $\left(130^{\circ}\right)$, and mixture melting point. The yield was 130 mg (30%).

Mixture (about 3:1) of 1-(2-Chloroethyl)-3-cyclopentyl-1. nitrosourea (4a) and 3-(2-Chloroethyl)-1-cyclopentyl-1-nitrosourea (4b).-A 0°, stirred suspension of 1 -(2-chloroethyl)-3čclopentylurea ($5.6 \mathrm{~g}, 29.5 \mathrm{mmoles}$) in $6 \times \mathrm{HCl}(250 \mathrm{ml})$ was treated with $\mathrm{NaNO}_{2}(5.6 \mathrm{~g}, 81 \mathrm{mmoles})$ in small increments. The reaction mixture was stirred at 0° for 2 hr and extracted with two $75-\mathrm{ml}$ portions of CHCl_{3}. The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right) \mathrm{CHCl}_{3}$ solution was evaporated in vacuo to a yellow oil which was further dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{3}$ overnight; yield $3.1 \mathrm{~g}(48 \%)$. The approximate $3: 1$ isomeric ratio was extablished by pmr.

Cyclopentylurea from Decomposition of a Mixture of 1 (2-Chioroethyl)-3-cyclopentyl-N-nitrosoureas (4 a and 4 b) with Ammonium Hydroxide.--A solution of the isomeric mixture of 4 a and $\mathbf{4 b}$ described above ($100 \mathrm{mg}, 0.456 \mathrm{mmole}$) in $3 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$ (10 ml) was stirred overnight at room temperature, then evaporated in vacuo. A carbon-decolorized solution of the residue in water (5 ml) deposited 42.5 mg (73%) of cyclopentrlurea as white crystals, $\mathrm{mp} 200^{\circ}$, alone or in mixture with an authentic sample.

Nitrosation of 1-(2-Chloroethyl)-3-cyclohexylurea (3a) A. In the Presence of Water-A 5°, stirred solution of $3 \mathbf{a}(9.5 \mathrm{~g}$, 46 mmoles) in $98-100 \%$ formic acid (95 ml) was treated (ropwise with $\mathrm{NaNO}_{2}(6.5 \mathrm{~g}, 94 \mathrm{mmoles})$ in water $(95 \mathrm{ml})$. The mixture was stirred at $0-5^{\circ}$ for 30 min , diluted with cold water (225 ml), and stirred further for 30 min . The light yellow precipitate was washed with water and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$; yield of 1-(2-chloroethyl)-3-cyclohexyl-N-nitrosourea (about 65% 14a and $\mathbf{3 5 \%}$ 14b by pmr in $\left.\mathrm{CDCl}_{3}\right), 10 \mathrm{~g}(94 \%), \mathrm{mp} 70^{\circ} \mathrm{dec}$.
B. In the Absence of Added Water.-A $\overline{5}^{\circ}$, stirred solution of $3 \mathrm{a}(1.0 \mathrm{~g}, 4.9$ mmoles) in $98-100 \%$ formic acid (15 ml) was treated with dry- $\mathrm{NaNO}_{2}(1.0 \mathrm{~g}, 14.5 \mathrm{mmoles})$ in small increments. After the addition, the mixture was stirred at 5° for 30 min , then slowly diluted with cold water (15 ml), and stirred further at $0-5^{\circ}$ for 30 min . The light yellow precipitate was washed with water and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{\mathrm{p}}$. The rield of 1 -(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (14a, devoid of 14b according to pmr in CDCl_{3}), $\mathrm{mp} 90^{\circ}$, was $0.96 \mathrm{~g}(84 \%)$.
C. By Nitroso Group Transfer in Isomeric Mixture of 14a and 14 b .--An isomeric mixture ($9.0 \mathrm{~g}, \mathrm{mp} 70^{\circ} \mathrm{dec}$) of 14 a and 3 -(2-chloroethyl)-1-cyclohexyl-1-nitrosourea (14b) as described above under A was dissolved in $98-100 \%$ formic acid (150 ml). The solution was stirred at 5° for 2 hr , diluted with cold water (250 ml), and further stirred at 5° for 30 min . The light yellow 14a was washed with water and dried in vacuo; yield 8.3 g $(92 \%), \mathrm{mp} 90^{\circ}$. The pnir spectrum in CDCl_{3} was identical with the product described under B.

1-(cis-2-Chlorocyclohexyl)-3-(2-chloroethyl)urea (Method B).-cis-2-Chlorocyclohexylamine hydrochloride ${ }^{13}(3.0 \mathrm{~g}, 0.18$ mole) was treated at 0° with $\mathrm{NaOH}(0.8 \mathrm{~g}, 0.02$ mole $)$ in water (5 ml). This mixture was extracted with three $50-\mathrm{ml}$ portions of ether. 2-Chloroethyl isocyanate ${ }^{34}(1.5 \mathrm{ml}, 0.18 \mathrm{~mole})$ was added dropwise to the dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, chilled (10°), stirred ether solntion. After 2 hr at room temperature, removal of the ether in tacuo left the crude product as a white solid (4.1 g), which was recrystallized from benzene (20 ml) by the addition of caclohexane (100 ml) and dried in vacuo; vield $\overline{3} .6 \mathrm{~g}(84 \%)$.
\mathbf{N}^{2} - [(2-Chloroethyl)carbamoyl]-L-(-)-glutamine (Method B).--To a stirred suspersion of $\mathrm{L}-(+)$-glutamine ($1.54 \mathrm{~g}, 10.6$ mmoles) in water (20 ml), cooled to 5°, was added $1.1 \times \mathrm{aOH}$ $(9.5 \mathrm{ml})$, and to the resulting solution ($\sim \mathrm{pH} 10)$ 2-chloroethyl isocyanate ${ }^{34}$ ($0.81 \mathrm{ml}, 9.5$ mmoles) was added dropwise. The mixture, allowed to warm gradually to room temperature, was stirred overnight, and the pH was adjusted from $\sim \overline{7}$ to ~ 2 with $1 \times \mathrm{HCl}(9.5 \mathrm{ml})$. Evaporation under reduced pressnre and below 25° left a solid residue which was washed with ethanol, then with water and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{3}$ leaving $1.1 \mathrm{~g}(41 \%)$ of the carbamoylglutaminte, $[\alpha]^{222} \mathrm{D}-10.3 \pm 0.2^{\circ}$ (c 0.990 , $\mathrm{H}_{2} \mathrm{O}$).
p-[3-(2-Chloroethyl)ureido]phenylacetic Acid (Method B).Triethylamine ($4.64 \mathrm{ml}, 30.0 \mathrm{mmoles}$) was added to a stirred suspension of p-aminophenglacetic acid ${ }^{35}$ ($4.67 \mathrm{~g}, 30.3$ mmoles) in $\mathrm{CHCl}_{3}(150 \mathrm{ml})$ at about 10°, and then 2-chloroethyl isocranate ${ }^{34}$ ($2.6 \mathrm{ml}, 30.0$ mmoles) wat added dropwise. The mixture was stirred at room temperature for 6 hr during which time most of the solid dissolved; the mixture was filtered, and the filtrate was extracted with three $2 \overline{0}-\mathrm{ml}$ portions of water. The amber, aqueous solution (pH 8) was made acidic ($\sim \mathrm{pH} 1$) with concentrated $\mathrm{HCl}(7.0 \mathrm{ml})$, stirred, and chilled. The precipitate was washed with water and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{\mathrm{j}}$. The crude product (6.9 g) was recrystallized from acetonitrile as yellow crystals, yield $4.0 \mathrm{~g}(52 \%)$.

4- \boldsymbol{p} - [3-(2-Chloroethyl) ureido] pheny $\mid\}$ butyric Acid (Method B). - - -Aminophenylbutyric acid ${ }^{36}$ ($5.0 \mathrm{~g}, 28$ mmoles) in ethanol $(200 \mathrm{ml})$ at room temperature was treated with 2 -chloroethyl isocyanate ${ }^{34}(2.45 \mathrm{ml}, 28 . \overline{5}$ moles), stirred for 2 hr , and chilled. The white precipitate (6.6 g) was recrystallized from ethanol $(150 \mathrm{ml})$ and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$; yield $\overline{5} .1 \mathrm{~g}$ (64%).

1-(4-Amino-3,5-dichlorophenyl)-3-(2-chloroethyl)urea (31) (Method B).-2-Chloroethyl isocyanate ${ }^{34}$ ($4.00 \mathrm{ml}, 46.7 \mathrm{mmoles}$) was added dropwise to a $0-5^{\circ}$, stirred solution of freshly recrystallized 2,6 -dichloro-p-phenylenediamine ${ }^{35}$ ($4.14 \mathrm{~g}, 23 . \overline{4}$ mmoles) in $\mathrm{CHCl}_{3}(190 \mathrm{ml})$, and the mixture was stirred overnight at ambient temperature. Recrystallization of the crude, insoluble

[^7]wolid（ 6.3 g ）from ethanol－water（170：100 mul）alforded 5．t）： （7末）of 31 as a flnffy white solid．

1－（2－Chloroethyl）－3－（3．5－dichlorophenyl）－1－nitrosoure a（32）．

 resulting redidish brown whtion was simed entil for 2 hr，poured into cold water（ 20 ml ），fonther wirred for 3 In at 05° ，aml （xtructed with two laml portions of CllClat Removal of for solvent nuder rednced pressure lent 32 whidh was triturated in petrolemm other and dried in amon ow Pa be ridil 147 ma （50）

 （ 160 ml ）was heaten at $\overline{\mathrm{T}}-85^{\circ}$ for 1 hr．The rembling whathe was evaponated to drymes moder rednced presonre with heating． A stirred smapension of the residual salt（further atried in toono at abont 50° ）in $11.0 \mathrm{~F}(180 \mathrm{ml})$ was treated with ionlomethane
 filtate was diluted with water（d．$\overline{3}$ l．t and chillei．The ervetal－ line 36 that formed wat washed with water atol dried in romo：
 from methamol．

Benzyl il－2，6－dioxo－3－piperidinecarbamate（37）was mul． by the phblished probednre in which raremization of the L inmmer was observed esis The fipld of rearritallized ul－37，

Anal．Caled for $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$ ： N ， 10.6 s ．Fommel： $\mathrm{N}, \mathrm{It} .67$.
DL－2－Aminoglutarimide（38），Hy Hrogenolwis of 37 w： （arried ont aceording to a publishal procedure．${ }^{23}$ ：A solution of 37 （ $6.8 \mathrm{~g}, 26 \mathrm{mmoles}$ ）in metham 1170 ml ）was shaken with ar， palladium－chareonl（ 1.7 g ）and hydrogen（initially abont so psi）for 2 hr with intermitent parging of evolved eartmon di－ oxide．Removal of the atalyst and evaporation of the solvent
 （rystals，mpabont 140° dea thit．tor mpabont 190° der）．With－ ont attentited pmification，rmole 38 was convertel to ma－1－ （2－chloroethy）－3－（2，6－dioxo－6－piperidyline（ 39 a ，see＇lable I：

1－（2－Chloroethyl）－3－（ 1，2，3，4－tetrahydro－2，4－dioxo－5－pyrimi－ dinyl）urea（Method B）．－－2－Chlomethyl isoryantete ${ }^{3,}(10.0) \mathrm{ml}$ ， tol 16 mole）was added sowly to a cold，stirred suspemsion of i－
 was stired at $10-20^{\circ}$ for 3 hr ，diluted with CIICD，（ 50 ml ，amal stirred at room temperatmre wernight．The mixtme was
 formed as athie solid was collecterd，washed with three lioml portions of $2-1$ IICl，water，then whamol，and dried in rocuo over $\mathrm{l}_{2} \mathrm{O}_{5}$ ；yield 11.3 g （ 8 S ； ）

1，1＇－p－Phenylenebis $\mathbf{3}$－（2－chloroethyl）ureal（Method B）．．．
 w，as 5° ，stimed sohtion of water－rerystallized p－phenchent－
 mixtmes stirred at $-1 t^{\circ}$ for 30 min and at room temperatare lor \therefore lu，was thimed witl， CHCl_{3} mat timed fir an additional t hr and dihnted with hexane to complete the precipitation．The rade product wats collected，washed with ertamol and then ether， amb air dried．It was trimmated and wathel in altamol and dried

1，1＇－p－Phenylenebis］3－（2－chloroethyl）－3－nitrosoureal．
1）ry NaN（0，（ $13 \mathrm{~g}, 190 \mathrm{mbole}$ ）wats aded in small frotions over

 formic acid（ 300 ml ）．The mixume was stimed at \bar{j}° for 2 hr， and the rellow preapitate that hal fommed was washed with water and hlried in wacuo over $\mathrm{P}_{2} \mathrm{O}_{2}$ ；yield $5.8 \mathrm{~g}(97 \%)$ ．

4＇－Cyano－1－aziridinecarboxanilide．－－p－Cymophenst ins－ ＂Yamate ${ }^{34}$（10．0 g，69．4 mmoles：was addet dropwise to a 5° ． －（irred sohtion ol ethyleninime 6.6 mo 70 monoles，in CllCl （ 100 ml ），and the mixtme was simed at room temperature for $\underline{2}$ hr．The white，solid rewidne（lle．it gemaining after the sul－

（32）By metbod of wof 133

amilide as white needlew which were washed with hexame amd dreed in memo：vield $10.0 \mathrm{~g}\left(77 \mathrm{C}, \mathrm{mp} 135^{\circ}\right.$

1－（ 2－Ch｜oroethyl）－3－！p－cyanophenyl）urea（Method E）． t＇$^{\prime}$（＇ymophom－l－aziridmerarboxanilide（ $10.0 \mathrm{~g}, ~ 53 . \overline{5}$ mmoles） wat aldeal in small portions to $)^{\circ}$ ，stimed concentrated HCl （50）mb，：mal the rentring mixture was stimed at $\bar{\sigma}-10^{\circ}$ for I In The white precipitae wate wabed with cold water and dried

ρ－Amino－N，N－dimethylbenzamide．．．．Gatsents dimethelamin． Wat－introduced into cold benzene（ 100 ml ）matil the weight gais
 mole；in benzene s．⿹勹 mit was swily adeded belos F_{0}° wirl shimg．The mixhme was stirred at room temperathe for 3 hr， and the solid that had precipitated was removed and washed with
 the wathing wat evaporated in raco，and the orange residue

 athe rewratizanion fom xylone．The tomal yield was 41° ．

N，N－Bis（2－chloroethyl）－1，4－piperazinedicarboxamide．

 tomperamre wembigh，and fhilled．The precipitare was washed with eold ClCla，ain dred，tritnrated in water，washed

 Fornd：（ $\mathrm{C}, 40 . \overline{5}$ ）： $11,6.00: 5,15.6$ ．

N， N^{\prime}－Bis 2 －chloroethyl）－N，N＇－dinitroso－1，4－piperazinedicar－ boxamide，－sorlimm nitrite（ 6.0 g ，si mmolev）was added in small

 in the deporition of a white solid．The misture was dilnted with

 23.2

1，3－Bisf 2－chloro－1 1－dimethylethyl）urea（42b）（Method F）． The reaction of ethy（2－hydroxy－l，1－dimethylethyl）carbamate＂
 aromding to the procedme of Najer，et al．a ${ }^{20}$ for similar conversion of atry i：3－chompondearhamate．Rapid distillation of the reation mixtme themgh a short colmm prodnced first a large
 sone then a onde podnet（abont 20 ml ）boiling at $8 \mathrm{~s}^{-1}-0^{\circ}$

 $\left(\mathrm{m}^{-1} \mathrm{C}\right.$（＇t） ．

 Woter ins mb，and the mixtme was stired lon 1 hr．＇The aghe－
 solidified aflar prolonged tritmations in water．The＂rmbe Farmm－dried $42 b$ war decrystallized from acetontrile－water：

2－（2－Chloro－1，1－dimethylethylamino）－4，4－dimethyl－2－oxazo－ line Hydrochloride（43：－－The nrea 42b，Ieft standing in a closed vial at rom remperatnre for \ddot{a} days，becane hygroscopic ami water whinble；strong infrares absorption at $1635(\mathrm{C}==\mathrm{N})$ shifting to $1690 \mathrm{~cm}^{-1}$（ $\mathrm{C}=\mathrm{Ni}$ ．A smilar shift from 162 t t． $1700 \mathrm{cmm}^{-1}$ Was observed in the recliation wh 1，3－bis（2－charoethyl）meato

[^8]water. Drying in nacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$ afforded analytically pure $43, \mathrm{mp} 105-107^{\circ}$ with sof tening from 90°.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O} \cdot \mathrm{HCl}: \mathrm{C}, 44.82 ; \mathrm{H}, 7 . \overline{2} ; \mathrm{N}$, 11.62. Found: C, $44.69 ; \mathrm{H}, 7.70 ; \mathrm{N}, 11.63$.

Decompesition of 1-(2-Chloropropyl)-3-cyclohexyl-1-nitrosourea (9) with Cyclohexylamine-A suspensinn of $9(200 \mathrm{mg}$, 0.81 mmole) in cyclohexylamine ($161 \mathrm{mg}, 1.62 \mathrm{mmoles}$) in water $(10 \mathrm{ml})$ and acetone (5 ml) was stirred for 20 hr at roont tempera ture. The white precipitate was washed with water and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$; identity as 1,3 -dicyclohexylurea was established by melting point (228°) and mixture nelting point with an authentic sample. The yield was $180 \mathrm{mg}(99 \%)$.

N-Cyclohexyl-2,2-dimethyl-1-aziridinecarboxamide.--Cyclohexyl isocyanate ${ }^{43}(3.0 \mathrm{ml}, 23.5 \mathrm{mmoles})$ was added dropwise to a stirred solution of 2,2 -dimethylaziridine ($2.12 \mathrm{ml}, 23.5 \mathrm{mmoles}$) in petroleum ether $(150 \mathrm{ml})$ with almost immediate precipitation of a white solid. After 30 min the product was collected, washed with petroleum ether, and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$; yield 4.06 g ($88 \mathrm{~F} \%$), $\mathrm{mp} 126^{\circ}$. Recrystallization from hexane (125 ml) afforded analytically pure needles (3.8 g) with melting point muchanged.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: ~ \mathrm{C}, 6 \overline{7} .30 ; \mathrm{H}, 10.2 \overline{7} ; \mathrm{N}, 14.2 \overline{7}$. Found: C, $67.50 ; \mathrm{H}, 10.58 ; \mathrm{N}, 14.30$.

1-(2-Chloro-2-methylpropyl)-3-cyclohexylurea (Method E).A 10% solution $(8 \mathrm{ml})$ of dry HCl in ether was added to a stirred solution of N -cyclohexy-1-2,2-dimethy-1-1-aziridinecarboxamide ($300 \mathrm{mg}, 1.53 \mathrm{mmoles}$) in ether (15 ml .). After 30 min , the precipitate was washed with ether and dried in racuo over $\mathrm{P}_{2} \mathrm{O}_{5}$. The crude product (300 mg) was recristallized from acetonitrilewater; yield 240 mg (67%). The structural assignment, based on analogy with reported ${ }^{44}$ products obtained from 1 -(arylsul-fonyl)-2,2-dimethylaziridines under similar conditions, was supported by pmr, homogeneity having been indicated by tle.

1,3-Bis(trans-2-chlorocyclohexyl)urea (Method C)--A cold, stirred solution of trans-2-chlorocyclohexylamine hydrochloride ${ }^{14}$ ($2.8 \mathrm{~g}, 16.4 \mathrm{mmoles}$) in water $(60 \mathrm{ml})$ was nentralized with $50 \% \mathrm{NaOH}$ solution and treated with 3 -(trans-2-chloro-cyclohexyl)-1-methyl-1-nitrosourea ($3.6 \mathrm{~g}, 16.4 \mathrm{mmoles}$). 'The resulting suspension was diluted with acetone (60 ml) and triethylamine ($\overline{0} \mathrm{ml}$), stined overnight at room temperature, then chilled $\left(0^{\circ}\right)$. The white product that formed was washed with cold water and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$; yield $3.1 \mathrm{~g}\left(65 \mathrm{c}_{6}\right)$.

1-(2-Bromoethyl)-3-cyclohexylurea (Method B).-Aqueous sodium hydroxide (50%) (5.9 g) was slowly mixed with a cold solution of 2-bromoethylamine hydrobromide ${ }^{32}$ (15.0 g, 0.07 mole) in water (10 ml). The mixture was stirred at 5° for 11$)$ min , then extracted with four $50-\mathrm{ml}$ portions of benzene. The benzene extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, chilled $\left(0-5^{\circ}\right)$, stirred, and treated dropwise with cyclohexyl isocyanate ${ }^{43}(9.15 \mathrm{~g}, 0.07$ mole). After 1 hr at $5-10^{\circ}$, the white urea that had formed was collected, washed with petroleum ether (50 ml), and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$; yield $13.7 \mathrm{~g}(75 \%)$.

1,3-Bis(2-bromoethyl)urea (Method E).—For 5.5 hr , dry HBr was passed through Drierite and into a 0°, stirred solution of $1, I^{\prime}$-carbonylbisaziridine ${ }^{45}(4.95 \mathrm{~g}, 44.0 \mathrm{mmoles})$ in dry ether $(70 \mathrm{ml})$ protected from moisture. Removal of ether and excess HBr under reduced pressure left the crude urea as a white solid which was triturated 3 min in ice water (25 ml) and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$; yield $7.35 \mathrm{~g}(61 \%), \mathrm{mp} 124-125^{\circ}$. Weak absorption at $1700 \mathrm{~cm}^{-1}$ indicated slight contamination by 2 -(2-bromo-ethylamino)-2-oxazoline hydrobromide. The product was stored in a desiccated container in a freezer to minimize further cyclization.

1-Nitroso-3-phenyl-2-imidazolidinone (13) by Reaction of 1-(2-Bromoethyl)-1-nitroso-3-phenylurea (5a) with Cyclohexyl-amine.-A solution of an isomeric mixture of 1 -(2-bromoethyl)-之-nitrost-3-phenylureas ($920 \mathrm{mg}, \mathbf{3} .38$ mmoles; approximately $7 \overline{5} / \mathrm{C} 5 \mathrm{a}$ and $2 \overline{5} \% \mathbf{5 b}$) in p-dioxane (15 ml) was added dropwise to a 6°, stirred solution of cyclohexylamine (0.39 ml , 3.4 mmoles) in p-dioxane (10 ml) and water (5 nll). The solution was stirred at room temperature for 22 hr , then diluted with water (50 ml), and cooled. The dried orange precipitate (440 mg) was recrystallized from absolute ethanol giving 280 mg ($\sim 58 \%$ from 5 a) of 13 as \tan crystals, $\mathrm{mp} 186-187^{\circ}$ dec, ν^{KBr} $1750 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

[^9]Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$: $\mathrm{C}, 56.54 ; \mathrm{H}_{3} 4.75 ; \mathrm{N}, 21.98$. Found: C, 56.72 ; H, $4.83 ; \mathrm{N}, 21.6 \overline{7}$.

The infrared spectrum of 13 described above was identical with that of the light yellow product (ntp $184-185^{\circ}$ dec) obtained in 96% yield by the nitrosation of 1 -phenyl-2-imidazolidinone ${ }^{46}$ in aqueous formic acid.

1,3-Bis(2-iodoethyl)urea (Method G)--A solution of 1,3 -bis(2-chlowethyl)urea ${ }^{45}(6.5 \mathrm{~g}, 35.2 \mathrm{mmules})$ and $\mathrm{NaI}(20.0) \mathrm{g}$, 133 mmoles) in dry acetone (300 ml), protected from moisture, was refluxed for 24 hr . The precipitate (2.7 g) after 8 hr was removed and, being water soluble, was assumed to be NaCl ; acetone (50 ml) was added at this point. The precipitate $(6.6 \mathrm{~g})$ after 24 hr was washed with water and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$ leaving 6.0 g of the desired urea, $\mathrm{mp} 158-160^{\circ}$ [lit. ${ }^{47} \mathrm{mp} \mathrm{156-}$ $\left.157^{\circ}\right]$. Dilution of the acetone filtrate with water (400 ml) afforded additional product ($3.4 \mathrm{~g}, \mathrm{mp} 15 \overline{5}-157^{\circ} \mathrm{dec}$); total yield 73%.

Screening Results

Introduction. - The true measure of the effectiveness of a drug against a neoplastic disease is the ability of the drug to kill the neoplastic cells at dosages that are not toxic to the host animal. A quantitative evaluation of drug action can be obtained by using the L1210 leukenia systenı in mice. ${ }^{4}$ In this test 10^{5} leukemia cells are injected into the peritoneal cavity of a mouse, and treatment of the mouse with a single injection of a drug niay result in an increase in life span or, in some instances, cures ${ }^{48}$ of the leukemia. The number of leukemic cells killed can be estimated from the observed increase in life span or fron the percentage of cures obtained. The reduction in cell population expressed as a logarithm is a convenient way to compare the efficacy of a series of active structures such as the nitrosoureas. For exanıple, a reduction of an inoculun of 10^{5} cells to 10^{2} cells (99,900 cells killed) can be called a " 3 -log kill." ${ }^{49}$ In the tables that follow, the LD_{10} in nornial aninials (when known), optimal doses, percentage of cures, and the "log kill" are given. In addition, the compounds active against the intraperitoneally injected cells were evaluated against 10^{4} cells injected intracerebrally to deternine their ability to cross the "blood-brain barrier." ${ }^{12}$ Using these standardized tests the greatest log kill that can be determined in the intraperitoneal (ip) test is 6 and in the intracerebral (ic) test is 5 . BCNU and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea were evaluated at higher inocula and found to kill 8 logs at their LD_{10}.

In some cases, cures are obtained at doses greater than the LD_{10} (but smaller than the LD_{90}). In other cases when the log kill ($\overline{5}$) is great enough to effect some cures $(20-50 \%)$ but none is oblained, the dose must exceed the LD_{10} and may be close to the LD_{90} for those compounds; toxicity data in normal animals are not available for compounds that effected no cures.

Structure-Activity Relationships.-The 1-(haloal-kyl)-1-nitrosoureas investigated in this study can be conveniently divided into six groups for analysis

[^10]Tisber パ

SHIf．）

$$
\mathrm{X}=\mathrm{Y}=\mathrm{F}
$$

1：1 mixtme： $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{F} ; \mathrm{X}=\mathrm{B}, \mathrm{Y}=(\mathrm{C}$
$\therefore=\mathrm{I}^{-}=\mathrm{Cl}\left(\mathrm{BCNO}^{-}\right)$
$1: 1$ mixture： $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{Br}: \mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{Cl}$
$X=Y=B r$
$X=Y=I$
XCH CH C （ NO O CO NH
$R=$ eychoheryl
$x=\mathrm{F}$
$X=\mathrm{Cl}$
$\mathrm{X}=\mathrm{Br}$

$\mathrm{N}=\mathrm{F}$

$$
x=c l
$$

$\mathrm{k}=1$－adabanty
$X=1 \cdot$
$\mathrm{X}=\mathrm{Cl}$
$\mathrm{i}=\mathrm{pheny}$
$x=1$
$x=(1$
$\lambda^{-}=13 r$
$\left.\mathrm{ClCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{AHCON}(\mathrm{NO}) \mathrm{CH}_{2} \mathrm{CHHCH}_{1}\right) \mathrm{Cl}$
$c_{-} \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NHCON}(\mathrm{NO}) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N} \mathrm{HCON}(\mathrm{NO}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
$\left.\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}(\mathrm{NO}) \mathrm{CONHC}_{6} \mathrm{H}_{4}\left(\mathrm{NHCON}_{(\mathrm{NO}}\right)\left(\mathrm{ClH}_{2}\right)_{3} \mathrm{Cl}\right)_{-p}$
$\because-\mathrm{C}_{6} \mathrm{II}_{1},{ }^{-} \mathrm{HCO} N(\mathrm{NO}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
$\mathrm{ClCH}_{2} \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right) \mathrm{NHCON}(\mathrm{NO}) \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right) \mathrm{CH}_{2} \mathrm{Cl}$


```
\(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{NHCON}\left(\mathrm{NO} \mathrm{CH}_{2} \mathrm{CF}_{4}\right.\)
\({ }_{c}-\mathrm{C}_{6} \mathrm{II}_{1}, \mathrm{NCON} \mathrm{CH}_{2} \mathrm{CF}_{3}\)
HTNO（mixture）
```


（imm） 1

－ 4	$36+45$	t；	70.10	\bar{i}	titt－tito
．0）	4（）－i）	t；	St）1010	T，	$\underline{-3}-10 t)$
2：4	$\therefore 30 \mathrm{t}$	－	（ijtl）	11	（）
－3：30	$41 \%-5!$	ti	（10） $0-1001$	－	（it）\quad ， 11
－	こ）－（0）	（；	（100）	－	（i）90t
	1－7	－	（1）	\because	1）
	（i）	6	\％－1）	<1	11
	13	1	11	\because	1）
	ij；	\therefore	11	11	11
	－9．	1	11	11	$1)$

Group B

1）60\％	$\overline{7}$	211	1	0
750	－	11	1	t）
2011	$\underline{1}$	11	Not tested	
Inartive			Not texted	
Inmetive			Not tested	
Intative			Sor tested	

Not toxter

Not forted
Sot towied
$\left.\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NHCON(NO}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$

$\mathrm{r}=2,6$－dimethy	
	$p-\mathrm{CH}_{3} \mathrm{O}$
	$m-\mathrm{CH}_{3} \mathrm{O}$
	$p-\mathrm{Cl}$
	$m-\mathrm{Cl}$
	p－1＊
	$p-\mathrm{Cl}^{\prime}$
	p CN
	$p-\mathrm{COCO}$
	$\mathrm{f}-\mathrm{CO})_{2} \mathrm{C}_{2} \mathrm{LH}_{\text {s }}$
	$p-\mathrm{CO}_{2} \mathrm{HI}$
	$m-\mathrm{CO}_{2} \mathrm{HI}$
	$p-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
	$p-\mathrm{SH}_{2} \mathrm{CO}_{2} \mathrm{H}$
	$o-\mathrm{Cl}$
	$m-\mathrm{NO}_{2}$
	p－SO． F^{\prime}
	11

： 1	b）	4．7）	\because	$1)$
16	ti	1．0）	Not town	t）
40	－	0	$\therefore 1$	0
411	$\bar{\square}$	（1）	Nothesterl	
－5	－	（10）	<1	11
100	－	11	11	11
－5	．	（21）	$\cdots 1$	11
－\％；	\because	1	－1	（1）
1.01	．	（20）	11	11
－	－	（2）	1	11
！）	F	（30）	－1	11
（3）	－	（30）	<1	0
10－18	－	（20）	$1)$	11
$\because 6$	i	（30）	$\underline{2}$	11
18	i）	（20）	0	t
50	3	0	0	0
$\underline{29}$	4	0	<1	11
125	\therefore	$1)$	Not tester	
，	：	11	$\zeta 1$	11
3146	．	11	<1	11
t！	－	11	Nint texterl	

$\mathrm{I}_{\mathrm{L}}=\underline{0}$－1taphther
$1 ;=-4$ qumoly
（immp
bimetive
Intative

R.NHCON(NO) $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$

T.ible IT ${ }^{\text {(Continued) }}$					
LD $\mathrm{o}_{1}{ }^{\text {b }}$	OD. ${ }^{\text {e }}$		${ }^{5}$ cells)	Ic ${ }^{\text {c }} 10$	
$\mathrm{mg} / \mathrm{kg}$	$\mathrm{mg} / \mathrm{kg}$	Log kind ${ }^{\text {d }}$	$\%$ cures $^{\text {e }}$	Log kill	$\%$ cures
Group D					
8.3	5-7.2	5	40	4	20
50	40-50	6	20-100	5	80-100)
<62	30-45	6	90-100	4	20-50
~ 143	62	6	70-100	$\overline{5}$	50-80
	750	6	100	Not tested	
<1000	375-500	6	20-80	4	20
69	50-72	6	30-90	4	(50)
61	46-61	6	80-100	$\overline{5}$	30-70
	250	6	70-80	4	20
	300	3	0	Not tested	
58	58-62	6	100	5	80-90
	62	6	(70)	0	0
100	64-93	5	(30)	$\overline{5}$	(70)
	125-250	6	(100)	5	(90)
	62-125	${ }_{\square}$	(30)	2	0
1190	750-840	5	(30)	<2	0

(5α-Cholestan- $3 \alpha-\mathrm{yl}$)-CNU

10 $26-40$

5

500
$\overline{5} 00$
5
$0-20$

1000

255
255
6
100

243
150
6
80
$80-250$
$50-100$
2
0

Group F
41
6

12-16

$$
\begin{equation*}
\geq 6 \tag{100}
\end{equation*}
$$

2500
5

Not tested

2
0
<2
0
<2

Not tested

2
0

5
60

4
0

Not tested
0

4

11
0

Not tested
${ }^{a}$ A detailed description of these screening procedures may be found in ref $4 .{ }^{b} \mathrm{LD}_{10}$ is defined as the dose required to kill 10% of a test group of normal animals as determined from log dose, probit mortality plots. The fit of the line to the data was obtained with a comphter program designed to appoxinate a leastefnares fit by shecessive approximations. "OD is dofineal as the optimal dose for the therapeutic effect observed, i.e., greatest log kill, largest per cent cures. d Defined in text. e For the definition of a cure see footnote 48. Parentheses indicate only one determination. ${ }^{a} \mathrm{CNU}=3$-(2-chloroethyl)-3-nitrosonreido, FNU $=3$-(2-floroethy-1)-3-1itrosoureido.
of structure-activity relationships. ${ }^{\text {an }}$ The emmpounds listed in group A of Table IV show the effects of varying the halogen at C-2 of an ethyl side chain. There appears to be little difference between the flomo and chloro compounds. Both types :ne more active than the bromo eompounds, and the only iodo componmi studied was inactive. The bromo compounds, atthough (pilte active against. L1210 innplanted intraperitoncally, are all inactive against, the intraterebrally implanted cells. A possible explanation for this observation night be that the bromo compounds have a greater tendency to cyolize to inative structures. When injected intraperitoneally these compounds ate able to kill cells injected into the peritoneal cavity, but cyclize during the trip to the brain and before they can cross the blood-brain barriex.

Compounds with variations in the alkyl group attached to the nitrosated nitrogen comprise gromp B. Athough the e-chloropropyl group gives rise to active compounds, the extremely high optinial doses (1000 and $750 \mathrm{mg} / \mathrm{kg}$) indicate that this group is less effective then the 2-ehloroethyl group. Other variations such as transfer of the chlorine atom to C-3 of the propyl group or attachment of arn ethyl group to C-1 of the ?chloroethyl group result in essentially inactive compounds.

The aronatic nitrosoureas of group C show a wide variation in activity, killing 2-6 logs of cells; but nost of these compounds kill between $3-\overline{5}$ logs. Against the intracerebrally implanted cells, they are much less offective, killing less than 99% of the cells and effecting no (arres. The presence of an aromatic ring seens to interfere with passage across the blood-brain barrier.

On the other hand, the nost active nitrosoureas are found among the eycloaliphatic compounds of group D. With one not easily understood exception, the bornyl compound, these compounds all kill $\overline{5}$ or 6 logs of cells and most of them kill 6 logs. Most of the compounds tested against the ic disease killed $4-\overline{5}$ logs. A notable execption is the adamantyl compound which is highly active against the ip clisease, but inactive against the ie disease, in spite of the great lipoid solubility imparted by the adanantyl group.

Group E contains the compounds bearing two 1-(2-chlorocthyl)-1-nitrosoureido groups. The more effective aromatic compounds are found in this group, and the two bisureido cycloaliphatics are about as good as the best nono compounds. The piperazine derivative, which has $n 0$ protons on its ureido nitrogens, is inmetive.

All the miscellaneous stmetures in group F are quite active against the ip disease, but the uracil derivative as expected, was inactive against the ie disease. On the other home, the glutarinide derivative, with rather low lipoid solubility, is highly active against the is: colls." This result and the lack of activity of the adammat derivative indicate that our original sugyestion about the relationship of lipoid solubility to the ability of a compound to cross the blood-brain

[^11] as the rigid geometryin of the adminantyl moioty, mast now be considererl.

Out of this sturly have come fifterm 1 - [o-(chlown

 against there erdl- (104) implanted interacerctorally.

'L'ablef V
 I. 1210 L.EUкныI:

	 1.1211) leukemia	
	1.	t.
	(1) $100{ }^{3}$	1). 1100
$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{FNU}$ and $\mathrm{FCH}_{2} \mathrm{CH} \mathrm{CNV}^{*}$	90-100	300
$\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CNC}^{-}$and $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{BN}{ }^{-}$	100	11
1-Methyleyclopenty-CNU*	100	00
Cyclohexyl-CNI**	80-100	20-10t)
Cyclohexyl-FNT*	70.60	60.100
3-Methylcyclohexyl-CNL*	$70-100$	$50-801$
4-Methylcyclohexyl-CNL	90-100	20-50
3,3,5-Trimethylerohexyl-CNU	100	Not levatil
cis-2-Chlorocyctohexyl-CNU	$3 \mathrm{3})-90$	(\%) ${ }^{\text {a }}$
trans-2-Chlorocychomyl-C.NU	$80-100$	$80-70$
- - Norbornyl-CNU*	100	80-90
$\underline{-N o r b o r n-7-F N U *}$	(10)-1.0t)	sth-90)
trans-1,4-Cyohohexylembis(CNE,	(100)	(60)
trans-1,4-Cyclohexylenebis(FNO^{-})	$100)$	150%
2,6-Dioxo-3-piperidyl-CNU*	100	-0)

 bromoethid)-3-aimosomeido, FNT $=3$-(2-flmorsethyl-3-nitrosomreido. The asterisk indicates the componnd is elfective in the ip and ictcsts. "Inchudes early experience with BCNT. Iater data indicate that a high percentage of carer can be consistently , otamed with this compomme.
exception, the ghtarimide derivative, these highly active structures are aliphatic or cycloaliphatic compounds.

The problenn now to be faced is that of solecting a limited mumber of these structures for further study in higher anmals and perhaps in man. If suggestive differences in host toxicity are truly significant, they nay form the basis for such a selection.

Acknowledgments.- The authors are indebted to Dr. J. R. Dice for gifts of 1-phenylcyclohexylamine. 3,3,o-trimethylcyclohexylamine, ethyl 1-ammocyclopentanecarboxylate, and ethyl 1-aninocyclohexaneearboxylate hydrochlorides, and to Dr. Koert Gerzon for a gift of 1 -adamantylamine hydrochloride; 10 Mr. W. J. Boyle, J1:, for technical assistance during the summer of 1965 ; to Mrs. Ruby Janes for vpe studies of the arqueous decomposition of BCND: to Dr: W. C. Coburn, Jr., for interpretation of prir and infrared spectra; to Mrs. Martha Thorpe for determination and interpretation of pnar spectra; to Di'. F'. M. Schabel, Jr', Dr'. W. R. Laster, Miss Valeric Peake, and members of the Cancer Screening Section

[^12]of Southern Research Institute for biological data; to Mrs. Luverne Mattil for assistance in the compilation of the data in Table IV; to Mr. W. E. Fitzgibbon, Jr., and his staff (Mrs. Sarah Jo Clayton, Mr. Francis Chen, Mrs. Lucy Rose, Mrs. Anita Shortnacy) for
preparation of some of the intermediates and products in large amounts; and to Dr. W. J. Barrett, Dr. P. D. Sternglanz, and members of the Analytical Chemistry Section of Southern Research Institute who performed the nicroanalytical and spectral deterninations.

The Use of α-Amino Acids in the Synthesis of Derivatives of 2-Aminoethanethiol as Potential Antiradiation Agents ${ }^{1}$

Janes R. Piper, Carl R. Stringrellow, Jr., and Thomas P. Johnston

Kettering-Meyer Laboratory, Southern Research Institute, Birmingham, Alabama 35205
Received June 17, 1966

Abstract

The utility of α-anino acids as internediates in multistep syntheses of derivalives of 2 -aminuethanethio as potential antiradiation agents has been further demonstrated; the types of compounds synthesized included S-substituted derivatives of 2 -aminoalkanethiols, 2 -amino- 2 -methylalkanethiols, and 1 -aminocycloalkane-methanethiols-chiefly inner Bunte salts and phosphorothioates-and cyclic dithiocarbamates, in addition to a number of the aminothiols themselves. A convenient method for the preparation of amino acid esters from $2-$ alkanones and cycloalkanones was developed by combining a modified Strecker amino acid synthesis with the Fischer amino acid esterification. Applied to 1,4-cyclohexanedione, this method led to the synthesis of a novel bisaziridine, 1,7 -diazaspiro[2.2.2.2]decane (37), and to a novel synthesis of 1,4 -diamino-1,4-cyclohexanedimethanethiol diphosphate ($\mathbf{4 0}$), which involved hydrolysis of the corresponding bis(phosphorothioic acid) 39 b in 1 M phosphoric acid. The following products so derived afforded mice good protection against lethal radiation in a standard test: sodium hydrogen S-2-amino-3-methylbutylphosphorothioate (5d), S-2-amino-2-methylpropylthiosulfuric acid ($\mathbf{1 6 b}$), S-2-amino-2-methylpropylphosphorothioic acid ($\mathbf{1 6 c}$), and tetrahydro- $\mathbf{1 H}, 3 \mathrm{H}$-thiazolo-[4,3-c] [1,4] thiazine-3-thione (29).

The lithium aluminum hydride reduction of α anino acid esters by Karrer, et al., ${ }^{2}$ provided a synthetic route to 2 -substituted 2 -aminoethanols that is particularly useful if the desired substituent is contained in a readily available amino acid. Vogl and Pöhnı demonstrated later that a direct reduction of amino acids could be achieved similarly. ${ }^{3}$ Thus, in the present work, 2 -amino-1-pentanol ($\mathbf{1}, \mathrm{R}=n-\mathrm{C}_{3} \mathrm{H}_{7}$) was obtained by the reduction of both ethyl du-norvalinate and di-norvaline. Conversion of the resultant 2 -aminoalkanols 1 to the corresponding 2 -bromoethylamine hydrobromides 3 was accomplished either directly by the action of (1) phosphorus tribromide on the preformed hydrobronide [as with 2 -amino-3-phenyl-1-propanol ${ }^{4}\left(1, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right.$) from de-phenylalanine] and (2) refluxing 48% hydrobromic acid ${ }^{\overline{5}}$ [as with L-leucinol ($\mathbf{1}, \mathrm{R}=i$ - $\mathrm{C}_{4} \mathrm{H}_{9}$) from L-leucine], or indirectly by the hydrobromic acid ring opening of the aziridine derived by the Wenker method ${ }^{6,7}$ [as with dL-valinol ($\mathbf{1}, \mathrm{R}=i-\mathrm{C}_{3} \mathrm{H}_{7}$) from dL-valine via 2 isopropylaziridine (2)]. These examples, then, typify the amino acid derived intermediates that led to the preparation of a number of S-substituted 2-aminoallkanethiols, chiefly inner Bunte salts and phosphorothioates, which were desired as analogs of known

[^13]radioprotective compounds. ${ }^{8}$ The syntheses outlined in Chart I were based on 2-aminoalkanols derived from common amino acids; a subsequent synthesis based on commercially available 2 -amino-2-methylbutyric acid (7) is shown in Chart II. Some examples of the utility of anino acids in the synthesis of potential antiradiation compounds have recently been reported. ${ }^{12}$

Commercially available 2 -amino-2-methyl-1-propanol (12) and later 2,2-dimethylaziridine (13, $\mathrm{R}=\mathrm{CH}_{3}$) were used as starting materials for the synthesis of 2 -amino-2-methylpropanethiol (16a) and several of its S-substituted derivatives by the route outlined in Chart II. The radioprotective activity shown by S-2-amino-2-methylpropylthiosulfuric acid ($\mathbf{1 6 b}$) in an initial test inspired the synthesis of a series of S-2-amino-2-methylalkylthiosulfuric acids in which one of the methyl groups of 16b is replaced by other alkyl groups as in the route $\mathbf{7} \rightarrow$ 16e already mentioned. Development of practical methods for the preparation of the intermediate amino acid esters $\mathbf{1 0}$ was requisite since neither these esters nor the corresponding amino acids (except 7) were readily available. The general procedure that evolved, as applied to 2-alkanones (8), combines a modified Strecker amino acid synthesis

[^14]
[^0]:

 Shumpmers. W. R. Instur, and 11. Li. Skjpper, Cancer Res., 23, i25 (1963). (3) (a) A. (indim, If. M. Venditti, I. A. R. Mead, and J. P. Glynn, Cancer

 1196̄̄): (d) V. 'l' DeVita, l'. l'. Carbone, A. H. Owens, Ir., G. L. Gold. 11. J. Nram, and J. Ertmonson, Ca,wer Res., 25, 1876 (1965).
 it) H. 1: Skipper, F. Mr. Echabel. Ir., and W. S. Wilcox, Cancer Chemer 14.0.a! Fem., 35, 1 illent.

[^1]: (7) L. Skulski, G. C. Palmer, and M. Calvin. Teirahedron Letters, 17:3 (1963).
 (8) P. L. Levihs and Z. 13. Papanas(assiou, J. Am. Che,n. Soc., 87, 826 (1965).

[^2]: (11) Z. Yoshida, Tetrahedron Letters, 2757 (1965).
 (12) Z. YoshIda, ibid., 3753 (1965).
 (13) G. E. MeCasland, R. K. Clark, Jr., and H. E. Carter, J. Am. Chem. Soc., 71, 637 (1948).
 (14) O. E. Paris and P. E. Fanta, ibid., 74, 3007 (1952); T. Taghchi, M. Kojima, and T. Mmro, ihid., 81, 4322 (1959).

[^3]: (15) (a) T. Curtius, E. Darmstaedter, H. Pringsheim, and R. Stangassinger, J. Prakt. Chem., 91, 1 (1915): (b) P. A. S. Smith, Org. Reactions, 3, 386 (1946).
 (16) A. T. Nielsen, J. Org. Chem., 27, 1993 (1962).
 (17) D. V. Nightingale, J. D. Kerr, 1. A. Gallagher, and M. Majenthal. ihid., 17, 1017 (1952).

[^4]: (18) 1. L. Pinkas, G. Pinkuw, and T. Cohen, J. Org. Chem., 27, 435) 1962).
 (19) Preparagons of 1 -metbylcyclobexylamine $l_{1 \text { ydrochloride (yield } 35 \% \text {) }}$ (and 1-methylcyolopentylamine bydrochloride (low yield), modeled after the procedure of V. H. Madilox, F. F. Godefroi, and R. F. Purcell, J. Med. Chem. 8, 230 (1965), for the preparation of the 1 -phenyl analug; see also J. J. Ritter and J. Kalish, J. Am. Chem. Soc., 70, 4048 (1948): Z. I. Vejdèlek, M. Rajšner, and M. Protiva, Collertion Gzech. Chem. Commun., 25, g45 (1960) ; H. 1. Barber and E. Lunt, J. Chem. Soc., 1187 (1960).
 (20) 11. 1. Srbaeffer awl E. Odin, J. Fharm. S.i., 54, 421 (19et5).

[^5]: (21) Reduction of diazonium compounds by formates and formic acid has been noted previously (see K. H. Saunders, "The Aromatic Diazo Compounds," Edward Arnold and Co., London, 1949, pp 272, 278).
 (22) A. C. Bratton and E. K. Marshall, Jr., J. Biol. Chem., 128, 537 (1939).
 (23) (a) V. Bruckner, J. Kovács, and K. Kovács, J. Chem. Soc., 1512 (1953); (b) E. Sondheimer and R. W. Holley, J. Am. Chem. Soc., 76, 2467

[^6]: (15) H. Wunker, /. A tr. Chem. Soc., 58, 2608 (1936).
 (1) A1. Najer, L'. Clabrier, abd R. Giudicelli, Bull. Soc. Chim. France 611 (1959).
 (27) BASF Colors and Chemieals, Inc., Charhote, N. C.
 (28) K. Randerath, "Thin-1ayer Chromatography." Academic Press Inc., New York, N. I.. 1964, p 129.
 (29) 13 y wethod of ref 24
 (30) (a) V. G. Nemete and G. 1.. Epshtein, Izr. Vysshith Cchebn. Zawedenii Khim. i Khim. Tekhnol., 5, 101 (1962): Chem. Abstr., 58, 3298 (1962);

[^7]: (34) W. Siefkin, Ann. Chem., 562, $\overline{5}$ (1949).
 (35) Aldrich Chemical Co., Milwaukee, Wis.
 (36) L. R. Moffett, Jr., and H. W. Vaughan, 1r., J. Org. Chem., 25, 1238 (1:160).

[^8]: f（1）t ．Wenker，thin， 60,1 （1981（193s）．

[^9]: (4:3) Carwin Co. North Haven, Conn.
 (44) V. 1. Markov and S. I. Burmistrov, Zh. Ousheh. Khim., 35. 153 (1965).
 (45) II. Bestian, Anr. Chem., 566, 210 (1950).

[^10]: (16) A. F. Mekiay and R. O. Bram, J. Org. Chem., 16, 1829 (1951).
 (47) J. M. Z. Gladych and E. P. Taylor, J. Chem. Soc., 1481 (1962).
 (48) The word cure is employed herein to imply drug-induced, 45 -day smrvival of hosts randomly selected from populations of leukemic mice in which 100% of a siguifirant sample of onueated rontrols died of the disease. ${ }^{4}$
 (49) It shonll be understood that " \log kill" is independent of the size of the inocmlum, whereas the number of cells killed is not. 50
 (50) For a detailed discnssion of the effect of chemotherapy on the kinetics of leukemic cell belravior and of the concept of " \log kill," see ref 4.

[^11]: (5in) In a previons ruport ${ }^{\text {an }}$ (he activity of a variety of 1 -substitnted 1 . mitrosoureas was describel. Of that grom 1,3 -bis(2-cthornethew)-1-nitrosompea showed the lighest degree of activit.
 as well as the blowl-brain barvier.03

 -3

[^12]:

[^13]: (1) This investigation was supported by the U. S. Ariny Medical Researcl and Development Command under Contract No. DA-49-193-MD-2028.
 (2) P. Karrer, P. Portmann, and M. Suter, Helv. Chim. Acta, 31, 1617 (1948).
 (3) O. Vogl and M. Pölm, Monatsh. Chem., 83, 541 (19ñ2).
 (4) W. J. Gensler and J. C. Rockett, J. Am. Chem. Soc., 74, 4451 (1952).
 (5) F. Cortese, "Organic Syntheses," Coll. Vol. IL, John Wiley and Sons, Inc., New York, N. Y., 1943, p 91.
 (6) (a) F. Wenker, J. Am. Chesi, Soc., 57, 2328 (19;35): (b) P. F. Fanta "lleterocyclic Componds witl T'liree- and Four-menluerel Rings," Part One, A. Weissberger, Ed, Interscience Publisliers, Inc., New York, N. Y. 1964. pp 528-532.
 (7) T. L. Cairns, J. Am. Chem. Soc., 63, $8: 1$ (1941)

[^14]: (8) For example: 2-amino-1-propanethiol.9 S-2-aminoethylthiosulfuric acid, ${ }^{10}$ and S -2-aminoethylphosphorothioic acid."
 (9) J. F. Thomson, "Radiation Protection in Mammals," Reinhold Publishing Corp., New York, N. Y., 1962, p 66.
 (10) B. Holmbery and B. Sörbo, Vature, 183, 832 (1959).
 (11) (a) B. Hansen and B. Sörbo, Acta Radiol., 56, 141 (1961): (1) S. A kerfeldt, Acta Radiol., Therapy, Phys. Biol., 1, 465 (1963): Chem. Abstr., 60, 13534 (1964)
 (12) (a)). R. Piper am. T. P. Johnston, J. (Frg. Chem. 28, 481 (196:3): (t) O). L. Flayman, J. W. Lown, abd 「. R. Sweeney, ibid., 30, 2275 (1965): (c) G. R. Handrick, E. R. Atkinson, F. E. Granchelli, and R. J. Bruni, J. Med. Chem., 8, 762 (1965): (d) H. Gershon and R. Rodin, ibid., 8, 864 (1965).

